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ABSTRACT

In this paper, the influence of a densely packed porous lining on the flow of a Rivlin-
Ericksen conducting viscoelastic fluid through a parallel plate channel subjected to a traverse
magnetic field is considered. The behavior of the velocity of the fluid in clean fluid region as
well as the slip velocity discussed at the interface for small and large thickness of the porous
bed. The velocity, Shear stress and mass flux are discussed for various values of the
parameters and are represented graphically. The results are obtained here are more general.
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1. INTRODUCTION:

Non-Newtonian fluid flows are encountered in a wide range of engineering
applications, chemical technology and petroleum industry as well as geophysical fluid
dynamics [1,2,3]. The study of these non-Newtonian fluids has great importance in
lubrication, extrusion of plastics, flow in journal bearings; flow is a shock absorber etc. [4,5].
The increase in applications urged Scientists and Engineers to provide mathematical models
for non-Newtonian fluids. The non-linearity between stress and deformation rate for phase
fluids makes it, in general, impossible to obtain a simple mathematical model as in the case of
Newtonian fluids. Viscoelastic fluids which possess certain degree of elasticity in addition to
viscosity are categorized as second order fluids.
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Rivlin and Ericksen [6] have proposed a mathematical model for viscoelastic fluids
which predicts normal stress affect although maintain Newtonian viscosity. The constitutive
equation governing the Rivlin and Ericksen [6] fluid is given by

T=-Pl+gA+ $,B+ ¢, A’
Where | =|| &;l, o; is the kronecker delta.
A = || aj ||, &= ¥2[ui; + u;,i] in the deformation tension
B = byl bj= by =a ;+a;; +2V, V, ;in the viscoelastic tensor

Aij, a; i are the acceleration gradients

Vi, Vm,j are the velocity gradients.

¢1, (I)z and (|)3 are material constants called the coefficient of viscosity, visco-
elasticity and cross-viscosity respectively, which are considered to be constant in this paper.

Initially the flow is due to a prescribed pressure gradient with boundaries at rest and at
time t > 0, the pressure gradient is withdrawn the upper plate suddenly moves with a uniform
velocity while the lower plate continues to be at rest. Researchers in this field are initiated for
the first time by Kazakia and Rivlin[7], in which they investigated run-up flow in an
incompressible isotropic viscoelastic fluid contained between two infinite rigid parallel
plates. Rivlin [8] also discussed run-up and spin-up flow in a viscoelastic fluid between two
infinite parallel plates containing Maxwell fluid initially at rest. They have studied the fluid
motion resulting from sudden velocities given to the plates and subsequently held constant.

The fluid flow is through a composite system consisting of two zones. The unsteady
governing equations are solved as initial value problem. Zone -1 consisting of Rivlin-
Ericksen fluid in the non-porous region bounded above by an impermeable boundary plane.
The flow in zone - 2 consists of flow through porous region bounded below by the rigid
plane. The flow in the non-porous region is governed by Navier-stokes equation. The porous
region although densly packed allows slip through the interface. Hence, we choose Darcy-
Lapwood model to govern the flow through porous bed. At the interface the slip velocity
satisfies the Beavers- Joseph Condition. Also at the interface the continuity of the velocity is
imposed so that the velocity the fluid in the clean fluid region at the interface equal to the slip
velocity. The velocity in both the clean fluid a porous Zone the shear stress and the mass flux
have been evaluated and their behaviour is discussed computationally for variations in the
governing parameters.

2. FORMULATION AND SOLUTION OF THE PROBLEM:

The equation governing initial flow in clean fluid region zone — 1 in non-dimensional
formis
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Ru =PR (1)
The corresponding non-dimensional boundary condition is

u=O0aty=1 (2)
The initial axial velocity in the porous bed (Zone — 2) is given by

_ PD*RA™
Y T 1A M?DPRAY ®)
212
ou:H:h
Where M? = % (the Hartmann number)
pUh
R=—— (the Reynolds number)
y7i

h2
D?= K (the inverse Darcy Parameter)

Hest
A= 1 (the ratio of the viscosities)

At t >0 the momentum equations governing the flow in non-dimensional form in zone —
1is

2 3

a—u:£8—2+8 ayz—Mzu (4)
ot Roy otoy

In zone — 2
ou
—p=5@—&3‘1R‘%UP - M?8u, (5)

ot OX
where S = le (is the viscoelastic parameter)
h

The boundary and the interfacial conditions in non-dimensional form are

u=laty=1 (6)
ou _
U= Ug; E:Dla(uB—up) ay=s (7

Solving (1) subjected to the conditions (2) the initial flow in the non-porous region is
given by
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— 1 [sinh(MVR@- y)))+

Sinh(MRY) 1} @

Slnh(M\/_ M\/—{ Sinh(M+/R)

where C; be an arbitrary constant to be determined.
We now solve (4) and (5) subjected to the conditions (6) and (7) using Laplace transforms

method.

Let U, Up and UB be the transformed velocities of u, U p and uB respectively.

The equations governing the transformed velocities, making use of the initial velocity
expression reduces to

du ﬁ2U= 1

[A33inh(MJﬁ(1—y))+ AsCosh(MRy)+ A88inh(M\/§)+A7] (9)

s+ M?

where BZ = 11 SRS

A, A; etc. are constants given in the appendix

_ _P(sD?RA+5A,,)

Up (10)
s (5+8A,)A,

The boundary and the interfacial conditions in the transformed form are

- 1

U=—aty=1 (11)

S
U=UB aty=s, (12)
Us =Up +Da™ du (13)
dy y=$

Solving (9) subjected to the condition (11) we obtain

(2 +3sRS)C,
Sinh(B)

u=
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{Sinh(ﬂ(l—y)ﬂ A J+

(1+ SRs)(M *R + 2%)Sinh()
[sinh(4y)sinh(MVR) - Sinh(MRy)Sinh(3)

. 1 A, (Sinh((8))Cosh(MVR) - Sinh(M+/R (1 y))Sinh(p)) ,
(L+SRs\M?R+ g2 )Sinh(8) '| — Cosh(M</RY)Sinh(B)

+_ A (Sinh(sy)-Sinh(8)) Sinh(gy)
(1+ SRs)p? Sinh(3) s(Sinh(5))

(14)

Where C'1 is an arbitrary constant to be determined.

du C,
(d_yl_s = Sinh(i [pCosh(p(1-s,))]+

+ (2+SRs) A,
(1+ SRs)(M R + 2 )Sinh(5)

[sCosh(gs, )Sinh(M VR ) — MYRCosh(M+Rs, )Sinh(s)] +

A,(pCosh(Bs, YCosh(M /R ) — M YRCash(MR(1 s, ))Sinh(3) )]
—M~/RSinh(M+/Rs, )Sinh()
(1+ SRs)M?R + 2)sinh(p)

(15)

lT|_D, is obtained from (12) and ( 13) using (10) and (15)

4 PCosh(B(l—s,))
U = Da . — -
{[Slnh(ﬂ(l—sl))— Do fCosh(B(l - s, ))]Sinh(B)

A, (2 + SRs)
(1+SRs)(M*R + %)

Do (pCosh(ps, )Sinh(MYR )~ MVRSinh(M +/Rs, )Sinh(8))-
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. . . . A,
(sinh{s, )sinh/R)- Sinh(M/Rs, )sinh(s )}{m SRS R+ 4° )}'

[ BCosh(ps, ).Cosh(M R )~ M+RCos(M~/R(1-s, ))Sinh(8)
(Da™)
—M+/R.Sinh(M~/R)Sinh(8)

[ sinh(gs; JCosh(M~/R ) - Sinh(MR(1 s, ))Sinh(8)
—Cosh(M+/Rs, )Sinh(8)

(1+SR V5 - [Da*Cosh(gs, )~ (inh(fs, ) - Sinh())]+

L{(oa)pcosh s, ) - sinnlps, )]+

2=
P(SD R 1X+5A11) [ A, (2+SRs) }

+
sA;(s+8A,,) (1+SRs)(M?R +B?)Sinh(B)

BCosh(Ps,)Sinh(Mv/R)
—M\/— Cosh(M+/Rs,)Sinh()+

A, BCosh(Ps,)Cosh(M/R) — Mv/R Cosh(M~/R (1-s,))Sinh(B)
— MYRSinh(M+/Rs,)Sinh ()

A Cosh(fs,) pCosh(Bs,)| . PsDR™+8A,]
: + + (16)
(1+SRs)s Sinh(B) sSinh(4s) sA,(s+A,0)

Taking inverse Laplace Transformations of (10), (14) and (16) we obtain

) exp( - yzt)(yly3 - yz)
u p = p —+
72 7273

1. . . .
_ Aa{Sinh(ﬁl )(Smh([;ly)s.nh(l\/lJﬁ)—Smh(lvwﬁy)Smh(Bl A+
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Sinh(8,y)Cosh(M+/R ) — Sinh(M~/R(1 - y))Sinh(8, ) .
—Cosh(M~/Ry )Sinh(g,)

. fle—snt 1y {AM(Sinh(Bny)Sinh(M\/E ) - Sinh(M~/Ry)Sinh(B, )2+ SRs,, )+
n=

Sinh(8,y)Cosh(M~/R ) — Sinh(MVR(1 - y))Sinh(3, ) N
—Cosh(M~/Ry)Sinh(g, )

. ALA Do A, — AL ]+ AA, - Ay +
+A168|nh([31(1—y)){ 15 8( 17 18) 39 ~ Moo

Da*MCosh(Ms, )= Sinh(Ms, ) + PS'/';h(M)} "

2

S _A\N oSt A? . L Q; Slnh(My)
+nz:1< 1)"e ((SHMZ)Sin(ﬂn)[sInh(ﬁny) S'”““”n)]j*—smh(w*

+ Sinh(5,(1 - y))Sinh(, )
Ao

Aos

o) AAs | BCosh(B(1-5)) (1, 1 9 1
Ue = Da {1+SRA9{ A, (D A18+Sinh(Bl)A”}+ ¥

ﬁlCOSh(ﬁl(l -$; ))
ﬁ o, o ACosh(Bs, )CoshMVR ) - MVRCosh(MA/R (1 s,)
a
Sinh(g, )~ M/RSinh(M+/R )Sinh(3, ))-

Sinh(8,s, )Cosh(M /R ) — Sinh(M~/R(L —s, ))Sinh(B, ) L1 A1j+
—Cosh(M+/Rs, )Sinh(8, ) Sinh(s, )

ies {A14A8(2+SR )[

n=1

p,Cosh(8,s, )M ~R - N
M+/RSinh(M+/Rs,.)Sinh(8, )

AL V ' Cosh(8,s, )Cosh(M~/R ) — M~/RCosh(M/R(L - s, ))Sinh(3, ) ]

M +/RSinh(M+/Rs, )Sinh(8, )
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A ([)’nCosh(ﬁnslH%Cosh(ﬂnsl )j}+

+
(1+SRs, )4, n

+ A B,Cosh(B,(1-s,)) DailﬁzcosMﬂzsl ) n B,Cosh(B,s,) n
1+ SRA,, A, —Sinh(,s, )+ Sinh(3, ) Sinh(, )

P MCosh(M(1-s, ).)Da 'Sinh(M) 1l
A, | Sinh(M(1-s, )) — Da*MCosh(M(1-s, ))

MCosh(M(1-s, )) Do "MCosh(Ms, )
SinhM((1=s, )) - Da *MCosh(M(L-s, )) | — Sinh(Ms, )

MCosh(Ms, )
Sinh(M)

. Az{ B,Cosh(B,(1- 212 )Da'Sinh(s, ) 1)

Where f,, f, etc. and Ag, Aqp etc. Ay are constants.

du

The shear stress are calculated using the formula T= &
y

N 1 /31Cosh(ﬁ1)8inh(M \/ﬁ) AL+
Y=L "7 sinh(s,)| - mRCosh(M VR Jsinh(5,))

A ﬁ1Cosh(ﬁ1)Cosh(M \/ﬁ)— M JﬁCosh(M \/ﬁ)Sinh(ﬁl)
— MR —Sinh(M /R Jsinh(g, )|+

fl(-l)”e‘s’nt |A,, (BnCosh(8n )Sinh(M/R ) — M</RCosh(M /R )sinh(8n ))2 + SRsp ) +

n=

&

(ﬁnCosh(ﬁn )Cosh(M R ) — M+/RCosh(M+/R )Sinh(8, )H} X

—M+/RCosh(M+/R)Sinh(8p, )
©  n.—spt A e MCosh(M)
néf L)e (sn+M2)Sinh(ﬂn)[ﬁnCOSh(ﬂn) Sinn(gn )]+ Sinh(M)
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[)’1Coshﬁ1

A { SAS(D}“_:LAN - Ais) + Aa[A19]_ Ay +

2

i A
Do *MCosh(M s, )— Sinh(Ms, ) + PS'”h('V')} L Pa
A Ay

We also determine the mass flux by the formula

Cosh(8, ) ... _ Cosh(MvR) .
ju y= Ag{slnhﬁll( R Sinh(M/R) T Slnh(Bl)]

COSNf, ) o Sinh(,) _ SinhMVR) . - ]_
ASI:( 5. Co (M\/_) WOR MR nh(g,)

[%ﬂﬁlsl)(:osh(l\/l \/E)— COSh(MM\/\—Tﬁ(l— S, ) Sinh(gl )_%’Y){R)Sinh(ﬂl )]:l +

X -spt, .\n 1 Cosh(fp, ) ... _Cosh(M\/E) :
néle (-1) [(M2R+ﬁﬁX1+SRsn){ 7 Sinh(MV/R ) TR Slnh(ﬁn)]

_(COSh(anl) Cosh(MYR) — Cosh(MVR (1-5,))

o VIR Sinh([}n)J}(2+SRsn) +

ASKCOSh(ﬂn)C osh(M VR ) - S'”““””)—S‘”“(M@Sinhcﬁn)]—

Pn MR MR
Cosh(Bns, ) h - . inh i
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(%—Sinh(ﬂn )j—_

(et A ’

n=1 (sp +M?)Sinh(8p) (COSh(ﬁnsl)
n

. [Cosh(M)—Cosh(Ms, )| | (1—Co_sh(ﬂl(1—sl ))
MSinh(M) Ag)

~Sinh(8, )J

hoalota, -a] -

B ot i PSinh(M) (1-Cosh(B,(1-s,))
A;A,, — Ayt Da "Cosh(Ms, )—-Sinh(Ms, )+ M7A, }+( A JAzg

2

3. DISCUSSIONS OF THE RESULTS:

The main aim of this investigation is to discuss the influence of a densely packed
porous lining on the flow of a Rivlin—Ericksen conducting viscoelastic fluid through a
parallel plate channel subjected to a traverse magnetic field. The behaviour of the velocity of
the fluid in clean fluid region as well as the slip velocity at the interface for small and large
thickness of the porous bed has been computationally analyzed for variations in the
governing parameters. Fig. [1-4] corresponds to the fluid velocity in the clean fluid region
when the thickness of the bed is small and figs [5-8] corresponds to its behavior when the
thickness is fairly large. We notice from fig (1) in general when M > 5, u reduces the lower
half till y <0.6 and later gradually rises to attain the prescribed value on the upper plate.
When M <5, the similar behavior is noticed till y <0.6 although a reversal flow is observed
is the upper half with u steeply raising to its prescribed value on the upper boundary. An
increasing M enhances the fluid velocity in the lower region while reducing in the upper half
fig (1). From fig. (2) we observe that an increase in through smaller values R (<10)
accelerates the fluid flow while for R>10 the velocity reduces in the flow field. A reversal
flow is observed in the flow field except in the vicinity in the upper plate for higher value of
R (=25). Lower the permeability of the porous bed greater the velocity of the fluid in the non-
porous region, although for sufficiently high inverse Darcy parameter D™ order 3 x 10° a
slight retardation is observed in the fluid. Fig. (4) corresponds to the variation of u with S the
viscoelastic parameter we observe that the magnitude of fluid enhances every where with
increase in S except in the vicinity of the upper plate.

When the thickness of the bed is sufficiently large a reversal movement is observed in
general with flow taking place in the direction of the imposed pressure gradient. We also
notice that the magnitude of u enhances with increase in M and R, except perhaps near the
upper boundary fig [5-8]. A similar behaviour is noticed with increase in D™ (<2 x 10°) and S
(<2). When D™ is 2 x 10° or S (=2) a slight depreciation is noticed in the axial velocity fig.
[7,8]. The slip velocity ug has been evaluated and tabulated in table-1 for different variations
in the governing parameters in both the cases of small and large thickness of the bed. We
notice that ug enhances with any one of M S, R, or D, fixing the remaining parameters.
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The shear stress on the upper plate and mass flux have been evaluated for variations
in the parameters and tabulated in tables 2 and 4. In either case of small and large thickness
of porous bed we find that the shear stress enhance on the plates with M, R, S for fixed values
of the other parameters while reduce with increase in D™. Hence lesser the permeability of
the bed higher the stresses on the plate. The mass flux reduces with increase in M, R, Sor D*
irrespective of the thickness of the porous bed.

—— M=4
—=— M=6
—— M=8
—=— M=10

Fig. 1. Variation . u ..*"> M in the clean fluid region (0.3<y<1)
P=1,t=1,D-1=104,R="C > =25, @ =0.5, A =12, 0 =0.3,5=03

1.2
1
0.8
0.6
04 ——R=5
. ’
0.2 -=— R=10
5 'O ——R=15
—=— R=20
-0.20]
g A —o— R=25
06 -
[
0.8 -

1 -
Y

Fig.2. Variation of u with R
P=11t=1D'=10* M=55=25 =05 A =12 O =03.5=0.3
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0.9
0.85
0.8
0.75
0.7
> 0.65
——
0.6
A=
0.55 -
D'=10°
0.5 D= 2x10°
D*=3x10°
0.45 S
0.4 T T T T T T 1
0.3 040506070809 1

Y

Fig.3. Variation of u with D-1
P=1t=1,R=10,M=55=25 a =05 A =12, 0 =0.3,5,=0.3

0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45

0.4 T T T T T T 1
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

——S=05
= S=1
——S=1.5

—a— S=2

Fig.4. variation of u with S
P=1t=1,R=10,M=5D-1=10", @ =05, A =1.2, 0 =0.3,5,=0.3
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1 -
0.8 -
0.6
0.4
—— M=4
-8 M=6
> |
1 —— M=8
—=— M=10

Y

Fig. 5 Variation of u with M (0.5<y<1)
P=1t=1.D = »R=10,5=25 a =05 A =12, O =03,5,=05

1 |—*R=5
-—=-R=10
—4—R=15
= R=20

Fig. 6 Variation of uwithR
P=1t=1,D%=10" M=5,5=25 & =05 A =12, O =0.3,5,=0.5
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1 -
0.75 A
0.5 A
0.25 - —epizggt
= . —aD'=10°

1 D= 2x10°
—h—

Fig. 7 Variati~ » of u with D-1
P=1,t=1,R=10,M=5,S=25 + =0.5, A =12, o =0.3,s1=05

1.2

1 4
0.8
0.6
0.4 - —+—-S5=05

5 0.2 A // = -S=1
- —S=15

1 l+S=2

Y

Fig. 8 Variation of u with S

P=1t=1 R=10 M=5D'=10* @ =05 A =12, O =03,5,=05
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TABLE -1
SLIP VELOCITY ug
S I 1 1 v \Y; VI Wil VI IX X Xl Xl1
0.3 | 0.83835 | 0.876998 | 0.884333 | 0.627566 | 0.746105 | 0.0783026 | 0.71921 | 0.84119 | 0.8519 | 0.597547 | 0.74751 | 0.8004540
05 ) ) ] ) 050423 | -0.752 ] ) ) ’ ) -0.735836
0.64152 | 0.863553 | 0.867589 | 0.089508 0.234986 | 0.33257 | 0.41592 | 0.611466 | 0.759402
1 | v | v | v|vi|vi IX X | X1 | X
M| 5 8 |10 | 5 5 5 5 5 5 5 5 5
R|10| 10|10 | 5 |15 |20 | 10 | 10 10 10 | 10 | 10
S |25|25|25|25|25| 25| 25| 25 25 05| 1 | 15
p* | 10* | 10* | 10* | 10* | 10* | 20* | 10° | 10° | 2x10° | 10* | 10* | 10*
TABLE — 2
SHEAR STRESSATY =1
S | 1 1 v \Y; \Yi| Wil VIl IX X Xl X1l
0. | 35819 | 5.9934 | 6.0349 ; 5.4844 | 3.8607 | 2.3691 | 3.3646 | 2.8677 | 4.7346 | 4.8643
3 4 4 9 7'3f50 7 4 5 1 7 6 4 45383
%‘ 120.42 | 4.1310 | 2.9880 | 94.812 | 52.831 | 58.680 | 262.80 166.86 | 15.920 | 35.295 | 59.181
5 9 3 3 3 6 8 13391 8 4 5 6
1 1 1 v \Y; \Yi| Wil VIl IX X Xl Xl
M 5 8 10 5 5 5 5 5 5 5 5 5
R 10 10 10 5 15 20 10 10 10 10 10 10
S 25 25 25 25 25 25 25 25 25 05 1 15
D* 10* 10* 10* 10* 10* 10* 10° 10° 2x10° 10* 10* 10*
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TABLE —3
MASS FLUX
S | 1 1 v \% Vi Vil Vil IX X Xl Xl
0.3 | 052320 | 0.51627 | 0.45123 | 0.43628 | 0.40412 | 0.3216 | 0.31427 | 0.28612 | 0.26602 | 0.24321 | 0.2262 | 0.19630
0.5 | 0.26667 | 0.26430 | 0.25281 | 0.24084 | 0.24132 | 0.22513 | 0.16727 | 0.26325 | 0.15227 | 0.15165 | 0.15240 | 0.15302
| 1 " v \% \Yi Vil Vil IX X Xl Xl
M 5 8 10 5 5 5 5 5 5 5 5 5
R 10 10 10 5 15 20 10 10 10 10 10 10
S 25 | 25 | 25 | 25 | 25 | 25 | 25 25 25 05 1 15
p* | 10* | 10* | 10* | 10* | 10* | 10* | 10° 10° 2x10° 10* | 10* | 10*
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APPENDIX
SR’M? PR (.. .
A - %a71 - _
1 Sinh(M\/ﬁ){D PRCosh(M+Rs; ) M\/E(Smh(M\/Rsl) Slnh(M\/R))}

A= Sinh(MVR(1-s,))— D*%a *M~/RCosh(MVR(1-s, ))

+DARASinh(MVR

A3 :i
A2
MPR1/2
A Sinh(MVR)
—Cosh(M+R)
A5 =
Sinh(M+/R)
PR
Ae =
M VRSinh(M~/R)
A PR
" T MJR
As =As+ Az As + Ag
A, _M?(@+R)
(1+ SRs)
IRV
(1+D R
S _—(n?*n® +M?)
" (@1+n’n’SR)

5 _ A, +M?°
' 1+SRA,
A, +M?
B — 10+
? \1+SRA
5 s, +M?
" V1+SRs,
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A, =(@+M?DRI?)
A, =D'RU+M?
A13 = A11A12

1
(M?R +B2 k1+SRs,)

A, =

A :(2+SRA9)

1
~ sinh(, 1=s,)- Da"1p,Cosh(8,(1—s,))

A, = (ﬂlcosh(ﬂlsl.)Sinh(M VR)-M~/RCosh(M+Rs, ).Sinh(s )

A, =[sinh;s;)Sinh(MVR ) Sinh(MVRs, )Sinh(, )
A, = [,BlDa_lCosh(M VR )Cosh(8;s, ) ~M~/RCosh(MVR(1—s, ))Sinh(8, )
—M+/RSinh(M+/R )Sinh(8, )]

_(Sinh(g;s, )Cosh(M~R ) - Sinh(MV/R(1—s, ))Sinh(8, )
| = Cosh(M+/Rs, ).Sinh(8, )

A, = (ﬂlCosh(ﬂlsl )Sinh(M~/R ) — M~/RSinh(M+/Rs, )Sinh(8, ))
A, =Sinh(@,(1-s,))- Da_lﬁZCOSh(ﬁz(l_S1 )

_ ( P(A,DRA™ + 04, )]
T L AgAL (A, +04y,)
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