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ABSTRACT 
 

This paper presents explicit and not fully implicit finite difference schemes of order one for stiff 
initial value problems with a small parameter � multiplying the first derivative.   The schemes 
are modified form of  classical Euler’s rule of order one. And the schemes are  both uniform and 
optimal  with respect to  the small parameter � , that is,  the solution of  the difference scheme  
satisfies the  error estimates  of the form: 
 

| u ( t i  ) - u i  | ≤ C min ( h ,  � ) 
 

where C is independent of   i, h and �. Here  h is the mesh size  and t i    is any mesh point.  The 
explicit scheme  presented in this paper solves  the open problem proposed by  Doolan et al., [6]. 
The open problem is; “Is it possible to obtain optimal  or quasi-optimal  methods which are not 
fully implicit? “. The  implicit  scheme presented in this paper which is not fully implicit  is also 
a solution for the  open problem. Finally numerical  experiments  are presented. 
 
Keywords:   initial layer , stiff initial value problems, singular perturbation problems,   
exponentially fitted, uniformly convergent, asymptotic  expansion,  finite difference schemes. 
AMS (MOS)  subject classification:  65F05, 65N30, 65N35, 650Y05. 
 

1. INTRODUTION: 
 
Consider  the initial value problem on the interval  Ω = ( 0,   ) 

   L u (t) ≡ � u' (t) + a (t) u (t) = f (t), t Є Ω,                                                        (1a) 

   u  (0) = �                                                                                                             (1b) 
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where   � > 0  is a small parameter and a and f are smooth functions on Ω . In addition,  we 

assume that a(t) ≥  α > 0 , t Є Ω , which is  sufficient to guarantee that  operator L  has a 

maximum  principle  and the solution  u(t)  of expression  (1a,b) is unique and bounded. 

                  The problem (1a,b)  is a singularly perturbed  equation with  an initial  layer  at t = 0  

whose  width is of  order    � [ 9, 10, 14 ].  We  may define  the  corresponding reduced  problem 

u 0 (t)   by 

    a (t) u 0  (t) = f (t),    t   ≥  0 .                                                                                 (2) 

This is an algebraic  equation  which is obtained by  putting  � = 0 in problem (1a). 

                 We introduce a uniform mesh of width   h  on Ω  with mesh points  

t i=  ih. We  solve  the problem (1a,b ) by difference schemes of the form 

    L h  u i   ≡   �   � (   - ρ   a i
h ) D +  u i  + a i

h  u i   =  f i
h  ,   i ≥  0 ,                      (3a) 

    u 0  =   �                                                                                                                (3b) 

where   a i
h , f i

h   and  the fitting factor  � (  - ρ  a i
h )  are specified later.  The   schemes of this 

paper    are chosen in such a way  that  they  must solve  exactly the reduced problem (2)  as   �  
goes to zero., because  the schemes which  solve exactly  the reduced problem  (2) are expected 
to work well for large t.  If the solution u i of  the  scheme (3a,b) satisfies the reduced problem (2)  
exactly at  the interior  points, as   �  goes to  zero, then we call such  finite difference  scheme  
with this property as optimal. 
 
              In this paper  the fitting factor  will be always be chosen  so that the  difference scheme  
is uniform with respect to  the small parameter, that is,  if u and   u i   are the solution s of  (1a,b) 
and  (3a,b) respectively, then at each node  
t i, there is an error  estimate of the form 

          | u (t i   ) - u i   | ≤ C h p                                                                                    (4) 

where C and p are independent of i, h and  �. 

                       Uniformly convergent finite-difference schemes for the problem   (1a, b) have 
been proposed by Doolan et  al., [6], Carroll [2 – 5] Miller [8], Farrell (7] and Selvakumar [13].  
Non-linear initial-value problems have been considered in Carroll [3], O’Reilly [11, 12] and  
Selvakumar [13].  The purpose of this paper is to propose two finite difference schemes for the 
problem (1a, b).  These schemes give the answer to the open problem suggested in [6] , problem 
12.3, Section 12, Part – I “Is it possible to obtain optimal or quasi-optimal methods which are not 
fully implicit”, for the numerical solution of the problem (1a, b). 
 
                     The solution of the schemes reflects the asymptotic properties of the solution of (1a, 
b).  We derive error estimates of the form: 
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              | u (t i   ) - u i  | ≤ C min (h, �)                                                                    (5) 

where C  Is independent of  i, h and �.  Schemes satisfying  inequality (5) are clearly uniform of 
order one and optimal. 
 
                     Throughout this paper ρ = h/� and C will denote a generic constant independent of   
i,   h and � 

 
2. ANALYTICAL RESUTLS 
 

In this section we collect some results concerning the solution of the problem (1a, b).  The first 
of these  show that the solution satisfies a maximum principle and hence is uniformly stable.  
The second lemma gives the estimates for the solution of   problem (1a, b).  A form of the 
solution   of (1a, b) is also given which will be useful in the next section. 
 

Lemma 2.1 
Let v (t) be   a smooth function. 

(a)  If  v(0) ≥ 0  and  L v(t) ≥ 0 for  t Є Ω  then  v(t) ≥ 0   for all  t Є Ω 

(b)  If  u(t) is the solution of the problem (1a, b) then 

         | u ( t)  |  ≤    | u(0) | + (1/α) max| f(y) |,   y, t Є Ω. 

 
Proof: Doolan et al., Lemma 2.1 and 2.2 [6]. 

 
Lemma  2.2 

Let L be the differential operator in problem (1a) and suppose that 

| v (0)  | ≤   C     and 

        |(L v) )(i (t)  | ≤   C [ 1 + � i−  exp(  - α t / �  )  ],  for  0   ≤  i   ≤  j,  t ≥  0. 

Then 

        | v )(i  (0 ) | ≤   C   � i−  ,   for  0   ≤  i   ≤  j +1 , t ≥  0, 

and 

         | v )(i  (t)  | ≤   C [ 1 + � i−  exp(  - α t / �  )  ],  for  0   ≤  i   ≤  j,  t ≥  0. 

 
Proof: Miller, Lemma 2.2 [8]. 

 
We can write [6] 

    u = v + w                                                                                                                  (6) 

where v and w are defined by 
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   v(t) = [ u(0) – (f(0)/a(0)) ] exp( - a(0) t/�  )                                                            (7) 

and 

   L w(t) = f(t) -  L v(t) , w(0) = f(0)/a(0),                                                                  (8) 

To verify this,  note that 

    v(0) + w(0) = u(0), L (v + w) = Lu 

and use the uniqueness of the  solution of the  problem (1a). 

 
3. VARIABLE FITTED SCHEME 

 

In this section an explicit finite difference scheme with a variable fitting factor is proposed.  The 
consistency, stability and convergence are discussed.  The explicit finite-difference scheme for 
(1a, b) is 
     L h  u i  ≡ � � ( - ρ a i

h )D + u i  + a i
h  u i =  f i

h  ,   i ≥  0 ,                               (9a) 

      u 0  =  �                                                                                                            (9b) 

where 

      a i
h   = a (t i )                                                                                                  (9c) 

     � (  - ρ a i
h   ) =  ρ a i

h  / [ 1 – exp( - ρ a i
h   )  ]                                          (9d) 

     � (   ρ a i
h ) = exp( - ρ  a i

h ) � ( - ρ a i
h    )                                                  (9e) 

and 

     f i
h =   [  a ( t i ) / a(t 1+i ) ]  f (t 1+i )                                                                 (9f) 

 

            The scheme (9a – f) is consistent with the problem (1a, b) in the sense that the discrete 
problem coincides with the problem (1a, b) when h approaches zero.  The scheme satisfies the 
necessary condition for uniform convergence introduced in [6, 7], that is, 
 
    Lim  � ( -  ρ a i

h   ) ) =  � ( - ρ a (0) )    as h →  0.                                       (10) 

The  a i
h     defined in the scheme satisfies the condition  in  the  interval [ t i , t 1+i  ] 

       | ( (1/h)  ∫   a(t) dt  )   - a i
h   | ≤   C h                                                     (11) 

where C is independent of  i and h.  The scheme models the equation (2) exactly as   �  goes to 
zero, 
  u 1+i  =  f(t 1+i ) / a(t 1+i ) .                                                                                    (12) 

That is, the scheme satisfies the necessary condition for optimal convergence, as 
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� → 0, 

    lim  (      f i
h    -   a i

h     [  f(t 1+i ) / a(t 1+i )  ]     )  = 0                                    (13) 

exactly.  And  so one can expect the scheme (9a – f) to work well for large t.  And the scheme is 
exponentially fitted, because the necessary condition (10) gives minimum requirement on the 
scheme to model the transient behavior of the problem (1a, b) accurately. 
 
Lemma 3.1 

The finite difference  operator L h  in  (9a – f) have the following maximum 
principle :  if  v i  is any mesh function such that  v 0   ≥  0 and  L h  v i  ≥ 0  for all t i  in  Ω, then v i  
≥ 0  for all t i Є Ω. 
 

Proof:      Suppose v i  is such that  v 0≥ 0   and L h  v i   ≥ 0   and assume that the discrete 
maximum principle is false.  Let k be the smallest integer for which  
v k  ≥ 0  and v 1+k  < 0.  Then 

             L h  v k   =   [ ( � (   ρ   a k
h )/ ρ )  +   a k

h ]  v 1+k  +    a k
h  v k   < 0, 

which  is a contradiction. 

 
Lemma 3.2 

The finite-difference operator  L h  in (9a – f) is stable in the following sense : 
if v i   is any mesh function, then 

           | v i   | ≤  | v 0   | +  (1/α )  max| L h  v j    | ,  j  ≥  0, 

 
Proof: Consider the two function 

            w i  =     | v 0   | +   (1/α )  max| L h  v i| ±   v i   ,   j  ≥  0. 
Clearly 
            w 0  =   | v 0     | +   (1/α )  max| L h  v j | ±  v 0  ≥  0  , 

and 
       L h w i  =  a i

h    (   | v 0  | +   (1/α )  max| L h  v i |  )  ±  L h v i  

                    ≥  α (   | v 0  | +   (1/α )  max| L h  v i |  )  ±  L h v i  ≥ 0. 
From the discrete maximum principle for L h  we conclude that 

w i  ≥  0 

as required. 
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Uniqueness of the solution of (9a - f) follows immediately from the discrete maximum principle. 
 
Theorem 3.3 

Let u and u i  be the solutions of problem (1a, b) and (9a – f) respectively.  Then, at each mesh 
point t i  

 
we have the following error estimate, 

| u(t i ) - u i | ≤ C min ( h ,  � ) 

where  C is independent of i, h and �. 

 

Proof: From the stability result of  L h  in scheme (9a – f)  it  suffices to prove that 

|τ i  |   =   | L h  [  u(t i ) - u i ] | ≤ C min ( h ,  � ) , 

where τ i  is the truncation error of the scheme (9a–f) with respect to the 
problem (1a, b). 

For  i = 0,   τ  = � - � = 0. 

For  i ≥ 1,   τ i    =    L h  [   u(t i ) - u i  ]  = L h  u(t i ) -  L h  u i  

                          =   L h   u(t i ) -  [  a (t i  ) / a(t 1+i ) ]  f ( t 1+i ) 

                          =    L h   u(t i ) -  [  a (t i  ) / a(t 1+i ) ] L u ( t 1+i ) 

From (6), we can write, 

τ i    =    [  L h  v(t i )  -    [ a (t i  ) / a(t 1+i ) ] L v ( t 1+i )   ] + 

                                  [  L h  w(t i )  -    [ a (t i  ) / a(t 1+i ) ] L w ( t 1+i )   ] 

        =   τ 1  + τ 2  

where 

τ 1    =      L h  v(t i )  -    [ a (t i  ) / a(t 1+i ) ] L v ( t 1+i ) 

       =    �  � (  ρ a i
h  ) D +  v{t i )  -  [  a (t i  ) / a(t 1+i  ) ] �  v′( i 1+i ) 

       =    �  � (  ρ a(t i )  ) D +  v{t i )  -  [  a (t i ) / a(t 1+i  ) ] �  v′(t 1+i  ) 

       =    �  � (  ρ a(t i )  ) D +  v{t i )  -  [  a (t i ) / a(t 1+i  ) ]  �  � (  ρ a(0)  ) D + v{t i ) 

       =    � [ � (  ρ a(t i )  ) -    � (  ρ a(0)  ) ] D +  v{t i )  + 

               (   [   a(t 1+i  )    -   a (t i )  ]/ a(t 1+i )  )  �   � (  ρ a(0)  ) D +  v{t i )           (14a)                

and 

0
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τ 2   =       L h  w(t i )  -    [ a (t i  ) / a(t 1+i ) ] L w ( t 1+i ) 

      =   �  � (  ρ a i
h  ) D +  w{t i )  -  [  a (t i  ) / a(t 1+i  ) ] �  w′( t 1+i ) 

      =    �  � (  ρ a(t i )  ) D +  w{t i )  -  [  a (t i ) / a(t 1+i ) ] �  w′(t 1+i ) .                  (14b) 

But 

| τ i |  =  |� [ � ( ρ a(t i ) ) -    � ( ρ a(0) ) ] D +  v{t i )  |  + 

                       |( [  a(t 1+i  )   -  a (t i )  ]/ a(t 1+i ) )  �   � ( ρ a(0)  ) D +  v{t i ) | 

              ≤     C min (h ,�)  + C h   exp( - ρ a(0)   )    v{t i ) 

              ≤     C min (h ,�)  + C h   exp( - a(0)  t i /� ) 

              ≤     C min (h ,�)                                                                                   (15a) 

Since from Lemma 4.1 of [6], we have, 

      |� [ � ( ρ a(t i ) ) -  � (  ρ a(0) ) ] D +  v{t i )|  ≤     C min (h ,�) 

and 

         (t i /�)    exp( - a(0)  t i /� )    ≤    C. 

Similarly 

|τ i |     ≤     C  �  h |w˝ ( θ ) | +  C min (h ,�)   |w′( t 1+i ) |  + 

                             C   h  �   |w′( t 1+i ) |    for some  θ Є [ t i , t 1+i  ] 

           ≤     C  ε min (1, ρ)   +  C min (h ,ε)  +   C   h  ε 

          ≤     C min (h ,�)  +   C   h  � 

          ≤     C  min (h ,�) .                                                                                     (15b) 

Since from Lemma 4.2 of [6] and from Lemma 2.2, 

         |w'( t 1+i ) |  ≤     C  ,  h |w"( θ ) |  ≤     C  min (  1 ,  ρ ) 

and 

          |� [  � (ρ a(t i )) - 1 ]  |   ≤     C  min (h,�). 

From (15a, b) we have 

        |τ i |     ≤     C  min (h,�)   for all i  ≥  0 .                                                     (16) 

Using the stability result, we have, 

       | u(t i ) - u i | ≤ C min ( h , � )       for all i  ≥  0 
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Note : The proof of convergence adopted in the above theorem is the boot-strapping technique as 
in [6].  The scheme (9a– f) is optimal and uniform of order one. 

 

4. CONSTANT FITTED SCHEME 
 

For practical computations a constant fitting factor is of great importance because it is evaluated 
just once rather than at each step in the algorithm.  In this section an optimal and uniform scheme 
with a constant fitting factor is proposed for  
(1a, b).  The scheme is defined as follows: 

 
    L h  u i  ≡   �  � (  ρ a (0)  ) D + u i  +   a i

h  u 1+i  =  f i
h      i  ≥  0 ,                          (17a) 

    u 0  = �                                                                                                                   (17b) 

where 

      a i
h = a (t i ),                                                                                                         (17c) 

  � (   ρ a(0) ) =  ρ a(0) / [ exp ( ρ a(0) )  - 1  ],                                                    (17d) 

and 

      f i
h   =   [   a (t i  ) / a(t 1+i  ) ]  f ( t 1+i )                                                               (17e) 

The scheme (17a – e) is consistent with the problem (1a, b).  The scheme satisfies the necessary 
condition for uniform convergence (10) exactly.  The     a i

h  defined in the scheme satisfies the 
condition (11).  The scheme models the reduced problem (2) exactly as �  goes to zero, that is, 
the scheme satisfies the necessary condition for optimal convergence (13) exactly.  And so the 
scheme (17a – e) is expected to work well for large t.  The discrete maximum principle for  L h  
and also uniform stability for the scheme (17a – e) follow from Lemmas 3.1  and 3.2 
respectively.  Hence the scheme (17a – e) is consistent and stable.  The convergence of the 
scheme (17a – e) is contained in. 
 

Theorem 4.1 
Let u and u i  be the solutions of problem (1a, b) and (17a – e) respectively.  Then, at each mesh 
point  t i  we have the following error estimate: 

| u(t i ) - u  | ≤ C min ( h ,  � )   for all i ≥  0, 

where C is independent of i, h and  � 
 

Proof: From the stability of L h in the scheme (17a – e) it suffices to prove that 
|  τ i  |   =   | L h  [ u(t i ) - u i ] | ≤ C min ( h ,  � ) , 

where  τ i   is the truncation error of the scheme (17a – e) with respect to the problem (1a, b). 

i
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For   i = 0,   τ 0  = � - � = 0. 

For i ≥ 1,    τ i     =    L h  [   u(t i ) - u i  ]  = L h u(t i ) -  L h  u i  

                           =   L h   u(t i )  -  [  a (t i  ) / a(t 1+i  ) ]  f (t 1+i  ) 

                          =    L h  u(t )  -  [  a (t ) / a(t 1+i  ) ]    L  u(t 1+i ) 

                          =    [  L h  v(t i )  -  [  a (t i ) / a(t 1+i  ) ]    L  v(t 1+i )  ]  + 

                                           [     L h  w(t i )  -  [  a (t i  ) / a(t 1+i  ) ]    L  w(t +i )  ] 

                        =   τ 1  + τ 2  

where 

τ 1   =    L h   v(t i  ) -  [  a (t i ) / a(t 1+i  ) ]    L  v(t 1+i ) 

      =    �  � (  ρ a(0) ) D +  v{t i )  -  [  a (t i ) / a(t 1+i ) ] �  v′(t 1+i ) 

      =    �  � (  ρ a(0)  ) D +  v{t i )  -  [  a (t i  ) / a(t 1+i  ) ]  �  � (  ρ a(0)  ) D + v{t i ) 

      =      (   [   a(t 1+i  )    -   a ( t i )  ]/ a(t 1+i  )  )  �   � (  ρ a(0)  ) D + v(t i )  

      =    (  [ (a(t 1+i  )    -   a (t i  )  ]/ a(t 1+i  )   )  a(0)  exp( -    a(0)   t 1+i  /� ) 

and 

τ 2   =    L h   w(t i )  -  [  a (t i  ) / a(t 1+i  ) ]    L  w(t 1+i  ) 

      =   �  � (  ρ a(0)  )[  D w{t i ) - w′ (t 1+i )  ] + � [  � (  ρ a(0)  ) - 1  ]w′ (t 1+i ) 

                                              + (   [ (a(t 1+i  )    -   a (t i  )  ]/ a(t 1+i )   )  � w′ (t ii+  ) 

But 

       |   τ i   |     ≤     C h   exp( -    a(0) t 1+i /    � ) 

                            ≤     C h   exp( -    a(0)  t i /� ) 

                            ≤     C min (   h ,  �  ) 

Since 

      (   t i /�  )    exp( -    a(0)  t i /� )    ≤     C 

Similarly, 

       |   τ 2   |    ≤     C min (   h ,  �  ) 

follows   from the expression (15b)  in Theorem 3.3. Therefore, 

i i
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       | τ i   |   ≤     C  min (   h ,  � )   for all i ≥ 0 . 

Using stability result we have 

        | u(t i ) - u i  | ≤ C min ( h ,  � )   for all i ≥ 0. 

 
5. NUMERICAL EXPERIMENT 
 

This section gives numerical results for  a  stiff differential equation, for large values of t.  All 
computations were performed in Pascal single precision on a Micro Vax II  Computer at 
Bharathidasan University, Thiruchirapalli – 620 024,  India.  Here, define 

 
Absolute error   =   max | u (t i ) - u i |,   i ≥  0 

and 
Relative   error  =   max | 1  – [ u i / u(t i )   ] |,  i ≥ 0 

where   u(t i )   and  u i  are exact and approximate solutions of (1a, b) and a difference 
approximation at each nodal point  t i . 
 
The schemes [7] compared in the tables are 
�  � ( - ρ a (t i )  ) D +  u i    +  a(t i ) u i   = f (t i  )                                                            (18) 
� � ( ρ a (0)  ) D + u i  +  a(t i )  u 1+i  = f (t i )                                                                (19) 
� � ( ρ a (t 1+i )  ) D +   u i  +  a(t 1+i )  u 1+i  = f (t 1+i )                                                        (20) 
� � ( ρ a (0)  ) D u i  +  a(t 1+i )  u 1+i  = f (t 1+i )                                                               (21) 
�[  θ � ( - ρ a (t i )  ) + (1-θ )   � (  ρ a (t i )  )   ]  D +  u i  +  a(t i )  [ θ  u i + (1- θ ) u 1+i  
                                                   =   [   θ f (t i )   +    (1- θ )  f (t 1+i ) ]                           (22) 

where   θ = 0.5. 

 
                     For the test problem the schemes (9a – f) and (17a – e) are distinct. Tables 5.1 and 
5.2 give absolute and relative errors for different values of h and  �  for the schemes (9a – f) and 
(17a – e).  It is observed that the schemes 
 
(9a – f) and (17a – e) are optimal and uniform of O (min (h, � ) ) since for 

� = 0.00001 the absolute error is approx O (10 6− ), whereas for  � = 0.01 the absolute error is O 
(h). 
                   A comparative study is made in Tables 5.3 and 5.4.  It is observed that the scheme 
(18) is explicit in nature, it is not optimal, but uniform.  The scheme (19) is implicit in nature, it 
is not optimal, but uniform.  The schemes (20) and (21) are implicit in nature and they are 
optimal and uniform.  The scheme (9a – f) is explicit in nature and it is optimal and uniform.  
The scheme (17a – e) is implicit but not fully implicit in nature and it is optimal and uniform. 
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CONCLUSION 
 

                  It is observed that the schemes (9a – f) and (17a – e) are better than the Backward – 
Euler or Trapezoidal Rule.  Overall  the schemes  presented in this paper solves the open 
problem  suggested in  [6], Problem 12.3, Section 12, Part I.  These schemes can be applied to  
solve  systems of  initial value problems.  Parabolic equations can be solved  using  these 
schemes  via method of lines.  Boundary value problems  can be solved using  shooting method. 
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Table 5.1 
Test Problem:  u’ = λ [ (1+t) 2   - (1+t)u ] + 1, 0<t<10, u(0) = 1.5, λ = 1/ ε . 

Scheme  (9a-f) 

 

MAXIMUM    ABSOLUTE     ERROR AT THE   NODAL POINTS 
�   \      h 1/8 1/16 1/32 1/64 
0.01 8.88932E – 03 9.44424E – 03 8.94475E – 03 5.95617E – 03 
0.001 8.88944E – 04 9.41277E – 04 9.69768E – 03 9.84550E – 04 
0.0001 8.89301E – 05 9.41753E – 05 9.70364E – 05 9.84669E – 05 
0.00001 8.94070E – 06 9.41753E – 06 9.65595E – 06 9.89437E – 06 
0.000001 8.34465E – 07 9.53674E – 07 9.53674E – 07 9.53674E – 07 
0.0000001 1.19209E – 07 1.19209E – 07 1.19209E – 07 1.19209E – 07 

 

MAXIMUM      RELATIVE      ERROR AT THE    NODAL POINTS 
�    \    h 1/8 1/16 1/32 1/64 
0.01 7.90167E – 03 8.88205E - 03 8.50117E – 02 5.66089E – 03 
0.001 7.90119E – 04 8.89963E - 04 9.40323E – 04 9.69410E – 04 
0.0001 7.90358E – 05 8.86917E – 05 9.40561E – 05 9.69172E – 05 
0.00001 7.98702E – 06 8.82149E – 06 9.41753E – 06 9.77516E – 06 
0.000001 7.15256E – 07 9.53674E – 07 9.53674E– 07 9.53674E – 07 
0.0000001 1.19209E – 07 1.19209E – 07 1.19209E – 07 1.19209E – 07 
 

Table 5.2 
Test Problem:  u’ = λ [ (1+t) 2   - (1+t)u ] + 1, 0<t<10, u(0) = 1.5, λ = 1/ ε . 

Scheme (17a – e) 
 

MAXIMUM   ABSOLUTE    ERROR AT THE MODAL  POINTS 
�    \      h 1/8 1/16 1/32 1/64 
0.01 8.88932E – 02 9.44424E – 03 8.94475E – 03 5.95617E – 02 
0.001 8.88944E – 04 9.41277E – 04 9.69768E – 04 9.84550E – 04 
0.0001 8.89301E – 05 9.41753E – 05 9.70364E – 05 9.84669E – 05 
0.00001 8.94070E – 06 9.41753E – 06 9.65595E – 06 9.89437E – 06 
0.000001 8.34465E – 07 9.53674E – 07 9.53674E – 07 9.53674E – 07 
0.0000001 1.19209E – 07 1.19209E – 07 1.19209E – 07 1.19209E – 07 
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MAXIMUM RELATIVE ERROR AT THE NODAL POINTS 
�     \    h 1/8 1/16 1/32 1/64 
0.01 7.90167E – 02 8.88205E – 03 8.50117E – 03 5.66089E – 03 
0.001 7.90119E – 04 8.85963E – 04 9.40323E – 04 9.69410E – 04 
0.0001 7.90358E – 05 8.86917E – 05 9.40561E – 05 9.69172E – 05 
0.00001 7.98702E – 06 8.82149E – 06 9.41753E – 06 9.77516E – 06 
0.000001 7.15256E – 07 9.53674E – 07 9.53674E– 07 9.53674E – 07 
0.0000001 5.96046E - 08 5.96046E - 08 5.96046E - 08 5.96046E - 08 
 
Table 5.3 
Test Problem 

u’ = λ [ (1+t) 2   - (1+t)u ] + 1, 0<t<10, u(0) = 1.5, λ = 1/ ε . 
In Table 5.3  maximum absolute error  at the nodal points are considered. 

� = 0.01 
 

Scheme   \     h 1/8 1/16 1/32 1/64 
Backward Euler 3.31942E – 02 6.46458E – 02 9.74873E – 02 8.97464E – 02 
Trapezoidal 1.191160E +01 1.28761E + 01 1.49662E + 01 1.99072E + 01 
Scheme (18) 1.24081E – 01 6.15854E – 02 3.03383E – 02 1.47152E – 02 
Scheme (19) 1.24080E – 01 6.15969E – 02 3.04699E – 02 1.50909E – 02 
Scheme (20) 8.88836E – 03 9.17709E – 03 8.36967E – 03 5.72014E – 03 
Scheme (21) 8.88932E – 03 9.39572E – 03 8.35967E – 03 5.72014E – 03 
Scheme (22) 1.78130E – 02 1.19807E – 02 9.70137E – 03 6.21510E – 03 
Scheme (17a–e ) 8.88932E – 0.3 9.44424E – 03 8.94475E – 03 6.16598E – 03 
Scheme (9a – f ) 8.88932E – 03 9.44424E – 03 8.94475E – 03 5.95617E – 03 
 
� = 0.001 

Scheme      \    h 1/8 1/16 1/32 1/64 

Backward  Euler 3.53062E – 02 7.41780E - 03 1.50483E-02 2.96368E-02 

Trapezoidal 1.10150E + 01 1.11662E+ 01 1.13571E+01 1.10837E+01 
Scheme (18) 1.24908E – 01 6.24084E– 02 3.11584E-02 1.55344E-02 
Scheme (19) 1.24908E – 01 6.24084E –02 3.11584E-02 1.55344E-02 
Scheme (20) 8.88944E – 04 9.41277E –04 9.69768E-04 9.84669E-04 
Scheme (21) 8.88944E – 04 9.41277E –04 9.69768E-04 9.84669E-04 
Scheme (22) 8.81255E – 03 2.95317E -03 1.48833E-03 1.12200E-03 
Scheme (17a–e) 8.88944E –0.4 9.41277E –04 9.69768E-04 9.84550E-04 
Scheme (9a – f ) 8.89444E – 04 9.41753E –04 9.69768E-04 9.84550E-04 
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� =  0.00001 

Scheme     \    h 1/8 1/16 1/32 1/64 
Backward Euler 3.55244E-05 7.53404E-05 1.55091E-04 3.14832E-04 

Trapezoidal 1.10130E+01 1.10731E+01 1.10963E+01 1.17216E+01 
Scheme (18) 1.24999E-01 6.24990E-02 3.12490E-02 1.56240E-02 
Scheme (19) 1.24999E-01 6.24990E-02 3.12490E-02 1.56240E-02 
Scheme (20) 8.94070E-06 9.41753E-06 9.65595E-06 9.89437E-06 
Scheme (21) 8.94070E-06 9.41753E-06 9.65595E-06 9.89437E-06 
Scheme (22) 7.82251E-03 1.96314E-03 4.98295E-04 1.32084E-04 
Scheme (17a–e ) 8.94070E-06 9.41753E-06 9.65595E-06 9.89437E-06 
Scheme (9a – f ) 8.94070E-06 9.41753E-06 9.65595E-06 9.89437E-06 
 
Table  5.4 
Test  problem:  u’ = λ [ (1+t) 2   - (1+t)u ] + 1, 0<t<10, u(0) = 1.5, λ = 1/ ε . 

In Table 5.4 maximum relative error at the nodal points are considered 

� = 0.01 

Scheme     \    h 1/8 1/16 1/32 1/64 
Backward Euler 2.95060E-02 6.07977E-02 9.26534E-02 8.01909E-02 
Trapezoidal 2.60509E+00 2.16940E+00 3.06724E+00 3.35335E+00
Scheme (18) 1.02221E-01 4.92319E-02 2.13697E-02 9.20743E-02 
Scheme (19) 1.02221E-01 4.92319E-02 2.13697E-02 9.32878E-03 
Scheme (20) 7.90071E-03 8.63075E-03 7.67410E-03 5.36454E-03 
Scheme (21) 7.90167E-03 8.83639E-03 7.94518E-03 5.44262E-03 
Scheme (22) 1.58337E-02 1.12675E-02 9.22036E-03 5.90694E-03 
Scheme (17a–e ) 7.90167E-03 8.88205E-03 8.50117E-03 5.86021E-03 
Scheme (9a – f ) 7.90167E-03 8.88205E-03 8.50117E-03 5.66089E-03 

 
� = 0.001 

Scheme    \h       1/8 1/16 1/32 1/64 
Backward Euler 3.13830E-03 6.98149E-03 1.45923E-02 2.91839E-02 
Trapezoidal 2.16626E+00 2.28175E+00 2.31153E+00 2.27309E+00 
Scheme (18) 1.02221E-01 5.78823E-02 2.93333E-02 1.44001E-02 
Scheme (19) 1.10222E-01 5.78823E-02 2.93333E-02 1.44001E-02 
Scheme (20) 7.90119E-04 8.85963E-04 9.40323E-04 9.69529E-04 
Scheme (21) 7.90119E-04 8.85963E-04 9.40323E-04 9.69529E-04 
Scheme (22) 7.83336E-03 2.77948E-03 1.44327E-03 1.10471E-03 
Scheme (17a–e ) 7.90119E-04 8.85963E-04 9.40323E-04 9.69410E-04 
Scheme (9a – f ) 7.90119E-04 8.85963E-04 9.40323E-04 9.69410E-04 
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� = 0.00001 

Scheme     \     h 1/8 1/16 1/32 1/64 
Backward Euler 3.15905E-05 7.09295E-05 1.05442E-04 3.09944E-04 
Trapezoidal 2.18499E+00 2.32822E+00 2.40933E+00 2.27309E+00
Scheme (18) 1.11102E-01 5.88141E-02 3.02933E-02 1.53748E-02 
Scheme (19) 1.11102E-01 5.88141E-02 3.02933E-02 1.53748E-02 
Scheme (20) 7.98702E-06 8.82149E-06 9.41753E-06 9.77516E-02 
Scheme (21) 7.98702E-06 8.82149E-06 9.41753E-06 9.77516E-06 
Scheme (22) 6.95336E-03 1.84762E-03 4.83155E-04 1.36057E-04 
Scheme (17a–e ) 7.98702E-06 8.82149E-06 9.41753E-06 9.77516E-06 
Scheme (9a – f ) 7.98702E-06 8.82149E-06 9.41753E-06 9.77516E-06 
 

 
 
 


