Available online at www.internationaleJournals.com

International eJournals

International Journal of Mathematical Sciences, Technology and Humanities 52 (2012) 541 – 560

α-Homeomorphisms in Topological Ordered Spaces

K.Krishna Rao and R.Chudamani

Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur (Dist), Andhra Pradesh, India. PIN-522 510. Email ID: krishnaraokomatineni@gmail.com Department of Science and Humanities. Assistant Professor of Mathematics, P. V. P. Siddhartha Institute of Technology, Kanuru, Penamaluru Mandal, Vijayawada, Krishna (Dist), Andhra Pradesh, India. PIN-520 007. Email ID: chudamaniramineni@yahoo.co.in

ABSTRACT

In this paper we introduce I- α -homeomorphisms, D- α -homeomorphisms and B- α -homeomorphisms for topological ordered spaces after introducing I- α -continuous maps, D- α -continuous maps and B- α -continuous maps, I- α -open maps, D- α -open maps, B- α -open maps, I- α -closed maps and B- α -closed maps for topological ordered spaces together with their characterizations.

KEYWORDS AND PHRASES. Topological ordered spaces, semi-open sets, semi-closed sets, pre-open sets, pre-closed sets, α -open sets, α -closed sets, increasing sets, decreasing sets, balanced sets, semi-continuous map, pre-continuous map, α -continuous map, semi-open map, pre-open map, α -open map, semi-closed map and α -closed map.

INTRODUCTION. Leopoldo Nachbin [8] initiated the study of topological ordered spaces. A topological ordered space is a triple (X, τ, \leq) , where τ is a topology on X and \leq is a partial order on X. Let (X, τ, \leq) be a topological ordered space. For any $x \in X$, $[x, \rightarrow] = \{y \in X / x \leq y\}$ and $[\leftarrow, x] = \{y \in X / y \leq x\}$. A subset A of a topological ordered space (X, τ, \leq) is said to be increasing if A = i(A) and is called decreasing if A = d(A), where $i(A) = \bigcup_{a \in A} [a, \rightarrow]$ and $d(A) = \bigcup_{a \in A} [\leftarrow, a]$. Observe that the complement of an increasing set is a decreasing set and the complement of a decreasing set is an increasing set. A subset of a topological ordered space (X, τ, \leq) is said to be balanced if it is both increasing and decreasing. M.K.R.S. Veera Kumar [10] studied different types of maps between topological ordered spaces. O.Njastad [9] introduced α -open sets and A.S. Mashhour et al [5] introduced α -closed sets. A subset A of a topological space (X, τ) is called a semi-open set [3] if $A \subseteq cl(int(A))$ and a semi-closed set if int(cl(A)) $\subseteq A$. A subset A of a topological space (X, τ) is called a space (X, τ) is called a pre-open set [4] if $A \subseteq int(cl(A))$ and pre-closed if cl(int(A)) $\cong A$. A subset A of a topological space (X, τ) is called a space (X, τ) is called an α -open set [9] if $A \subseteq int(cl(int(A)))$ and α -closed set if cl(int(cl(A))) $\subseteq A$.

www.internationalejournals.com

INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES, TECHNOLOGY AND HUMANITIES

LEMMA 1.1: A subset A of a topological space (X, τ) is an α -closed set iff it is semi-closed and pre-closed.

*Corresponding author

Note that the complement of an α -open set is an α -closed and vice versa. We denote the complement of A by C (A).

For a subset A of a topological ordered space (X, τ, \leq) , we define $i\alpha cl(A) = \bigcap \{F/F \text{ is an increasing } \alpha \text{-closed subset of X containing } A \},$ $d\alpha cl(A) = \bigcap \{F/F \text{ is a decreasing } \alpha \text{-closed subset of X containing } A \},$ $b\alpha cl(A) = \bigcap \{F/F \text{ is a balanced } \alpha \text{-closed subset of X containing } A \},$ $b\alpha cl(A) = \bigcap \{F/F \text{ is a balanced } \alpha \text{-closed subset of X containing } A \},$ $A^{i\alpha o} = \bigcup \{G/G \text{ is an increasing } \alpha \text{-open subset of X contained in } A \},$ $A^{d\alpha o} = \bigcup \{G/G \text{ is a decreasing } \alpha \text{-open subset of X contained in } A \}$ and $A^{b\alpha o} = \bigcup \{G/G \text{ is a balanced } \alpha \text{-open subset of X contained in } A \}.$

Clearly $i\alpha cl(A)$ (resp. dacl (A), bacl (A)) is the smallest increasing (resp. decreasing, balanced) α -closed set containing A. $I\alpha O(X)$ (resp. $D\alpha O(X)$, $B\alpha O(X)$) denotes the collection of all increasing (resp. decreasing, balanced) α -open subsets of a topological ordered space (X, τ , \leq). I α C(X) (resp. D α C(X), B α C(X)) denotes the collection of all increasing (resp. decreasing, balanced) α-closed subsets of a topological ordered space (X, τ, \leq) . A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called α -continuous [5] if $f^{-1}(V)$ is an α -closed set of (X, τ) for every closed set V of (Y, σ) . A function $f: (X, \tau) \to (Y, \sigma)$ is called α -open [5] if f(G) is an α -open set in Y, for every open set G of X. A function $f: (X, \tau) \to (Y, \sigma)$ is called α -closed [5] if f(F) is an α -closed set in Y for every closed set F of X. A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called semi-continuous if $f^{-1}(V)$ is a semi-open set of (X, τ) for every open set V of (Y, σ) . A function $f: (X, \tau) \to (Y, \sigma)$ is called pre-continuous if $f^{-1}(V)$ is a pre-closed set of (X, τ) for every closed set V of (Y, σ) . A function $f: (X, \tau) \to (Y, \sigma)$ is called semi-open map if f(G) is a semi-open is set in (Y, σ) for every open set G of (X, τ) . A function $f: (X, \tau) \to (Y, \sigma)$ is called pre-open map if f(G) is a pre-open set in (Y, σ) for every open set G of (X, τ) . A function $f: (X, \tau) \to (Y, \sigma)$ is called semi-closed map if f(G)is a semi-closed set in (Y, σ) for every closed set G of (X, τ) . A function $f: (X, \tau) \to (Y, \sigma)$ is called pre-closed map if f(G) is a pre-closed set in (Y, σ) for every closed set G of (X, τ) . A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called an α -closed map if f(G) is an α -closed set in (Y, σ) , for every closed set G of (X, τ) . A function $f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ is called I-semi-continuous[1] (resp. D-semicontinuous, B-semi-continuous) map if $f^{-1}(G) \in IPO(X)$ (resp $f^{-1}(G) \in DPO(X)$, $f^{-1}(G) \in BPO(X)$) open set of (X^*, τ^*) . A function $f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ is called I-prean whenever G is continuous [2] (resp. D-pre-continuous, B-pre-continuous) map if $f^{-1}(G) \in IPC(X)$ (resp $f^{-1}(G) \in DPC(X)$, $f^{-1}(G) \in BPC(X)$ whenever G is an open set of (X^*, τ^*) . A function $f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ is called an I-semi-open (resp.a D-semi-open, B-semi-open) map [2] if $f(G) \in ISO(X^*)$ (resp $f(G) \in DSO(X^*)$, $f(G) \in BSO(X^*)$ whenever G is an open subset of (X, τ) . A function $f: (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ is called an I-pre-open (resp. a D-pre-open, B-pre-open) map [2] if $f(G) \in IPO(X^*)$ (resp $f(G) \in DPO(X^*)$, $f(G) \in BPO(X^*)$ whenever G is an open subset of (X, τ) . A function $f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ is called an I-semi-closed (resp a D-semi-closed, B-semi-closed) map [1] if $f(G) \in ISC(X^*)$ (resp $f(G) \in DSC(X^*)$, $f(G) \in BSC(X^*)$ whenever G is a closed subset of X. A function $f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ is called an I-pre-closed (resp a D-pre-closed, a B-pre-closed) map [2] if $f(G) \in IPC(X^*)$ (resp $f(G) \in DPC(X^*)$, $f(G) \in BPC(X^*)$) whenever G is a closed subset of X, A bijection $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ is called an I-semi-homeomorphism [1] (resp a D-semi-homeomorphism, a B-semi-homeomorphism) if both f and f^{-1} are I-semi-continuous (resp. D-semi-continuous and B-semi-continuous). A bijection $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ is called an I-pre-homeomorphism [2] (resp a D-pre-homeomorphism, a B-pre-homeomorphism) if both f and f^{-1} are I-pre-continuous (resp. D-pre-continuous and B-pre-continuous).

Authors studied Semi-homeomorphisms in Topological Ordered Spaces [1] and Pre-homeomorphisms in Topological Ordered Spaces [2].

1. I-α-CONTINUOUS, D-α-CONTINUOUS AND B-α-CONTINUOUS MAPS

We introduce the following definition.

DEFINITION 2.01. A function $f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ is called an I- α -continuous (resp. D- α continuous, B- α -continuous) map if $f^{-1}(V) \in I\alpha C(X)$, (resp. $f^{-1}(V) \in D\alpha C(X)$, $f^{-1}(V) \in B\alpha C(X)$) whenever V is closed in X.

It is evident that every x- α -continuous map is an α -continuous for x = I, D, B and that every B- α -continuous map is both I- α -continuous and D- α -continuous.

The following example shows that an α -continuous map need not be a x- α -continuous for x=I, D, B.

EXAMPLE 2.01. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\} = \tau^*$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Clearly (X, τ, \leq) is a topological ordered space. Let f be the identity map from (X, τ, \leq) onto itself. $\{a, c\}$ is closed set in X, but f^{-1} ($\{a, c\}$) = $\{a, c\}$ is neither an increasing nor a decreasing α -closed set. Thus f is not x- α -continuous for x = I, D, B. Clearly f is an α -continuous.

The following example shows that a D- α -continuous map need not be a B- α -continuous.

EXAMPLE 2.02. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{a, b\}\} = \tau^*$ and $\leq = \{(a, a), (b, b), (c, c), (b, a)\}$, and $\leq^* = \{(a, b), (b, b), (c, c)\}$. Let g be the identity map from (X, τ, \leq) onto (X^*, τ^*, \leq^*) . Then g is not a B- α -continuous map, however g is a D- α -continuous map.

The following example supports that an I- α -continuous map need not be a B- α -continuous map.

EXAMPLE 2.03. Let $X=\{a, b, c\} = X^*, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\} = \tau^*$ and $\leq = \{(a, a), (b, b), (c, c), (a, c), (b, c)\} = \leq^*$. Let $f: (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ be the identity map. Then f is an I- α -continuous but not a B- α -continuous map.

2.01 Thus we have the following diagram.

For a function $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$

,where $p \rightarrow q$ (resp. $p \leftarrow | \rightarrow q$) represents p implies q but q need not imply p (resp. p and q are independent of each other)

The following theorem characterizes I- α -continuous maps.

THEOREM 2.01. For a function $f: (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$, the following statements are equivalent.

- 1) f is I- α -continuous.
- 2) $f(i\alpha cl(A)) \subseteq cl(f(A))$ for any $A \subseteq X$.
- 3) $iacl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$ for any $B \subseteq X^*$.
- 4) For any closed subset K of (X^*, τ^*, \leq^*) , $f^{-1}(K)$ is an increasing α -closed subset of (X, τ, \leq) .

Proof. (1) => (2) Since cl(f(A)) is closed in X* and f is I- α -continuous we have that $f^{-1}(cl(f(A)))$ is an increasing α -closed set in X. f (A) $\subseteq cl(f(A)) => A \subseteq f^{-1}(cl(f(A)))$ and $i\alpha cl(A)$ is the smallest increasing α -closed set containing A. Therefore $i\alpha cl(A) \subseteq f^{-1}(cl(f(A)))$ and hence $f(i\alpha cl(A)) \subseteq cl(f(A)))$. (2) =>(3) Put A = $f^{-1}(B)$. Then $f(A) \subseteq B$ and $cl(f(A)) \subseteq cl(B)$. Therefore $i\alpha cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$. (3) => (4) Let K be any closed set in X*. From (3) $i\alpha cl(f^{-1}(K)) \subseteq f^{-1}(cl(K)) = f^{-1}(K)$. But $f^{-1}(K) \subseteq i\alpha cl(f^{-1}(K))$. Thus $f^{-1}(K)$ is an increasing α -closed set in (X, τ , \leq) whenever K is closed subset in (X*, τ^* , \leq^*).

 $(4) \Rightarrow (1)$ follows from definition.

THEOREM 2.02. For a function $f: (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$, the following statements are equivalent.

- 1) f is D- α -continuous.
- 2) $f(d\alpha cl(A)) \subseteq cl(f(A))$ for any $A \subseteq X$.
- 3) dacl($f^{-1}(B)$) $\subseteq f^{-1}(cl(B))$ for any $B \subseteq X^*$.
- 4) For every closed subset K of (X^*, τ^*, \leq^*) , $f^{-1}(K)$ is a decreasing α -closed subset of (X, τ, \leq) .

THEOREM 2.03. For a function $f: (X, \tau, \leq) \rightarrow (X^*, \tau, * \leq *)$, the following statements are equivalent.

- 1) f is B- α -continuous.
- 2) $f(bacl(A)) \subseteq cl(f(A))$ for any $A \subseteq X$.

- 3) $\operatorname{bacl}(f^{-1}(B)) \subseteq f^{-1}(\operatorname{cl}(B))$ for any $B \subseteq X^*$.
- 4) For every closed subset K of (X^*, τ^*, \leq^*) , $f^{-1}(K)$ is a balanced α -closed subset of (X, τ, \leq) .

THEOREM 2.04. Let (X, τ, \leq) and (X^*, τ^*, \leq^*) be two topological ordered spaces.

Let $f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be a map. Then f is I- α -continuous iff it is I-semi-continuous and I-precontinuous.

Proof. Follows from Lemma 1.1.

The following example shows that an I-semi-continuous map need not be an I- α -continuous.

EXAMPLE 2.04. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\tau^* = \{\phi, X^*, \{a\}\}$. Let $\leq = \{(a, a), (b, b), (c, c), (a, b), (c, b)\} = \leq^*$. Define $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by f(a) = b, f(b) = a and f(c) = c. Then f is an I-semi-continuous but not an I- α -continuous.

The following example shows that an I-pre-continuous map need not be an I- α -continuous.

EXAMPLE 2.05. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a, b\}\}$, $\tau^* = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Define $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by f(a) = b, f(b) = a and f(c) = c. Then *f* is an I-pre-continuous map but not an I- α -continuous map.

THEOREM 2.05. Let (X, τ, \leq) and (X^*, τ^*, \leq^*) be two topological ordered spaces.

Let $f: (X, \tau, \leq) \to (X^*, \tau, \leq^*)$ be a map. Then f is D- α -continuous iff it is D-semi-continuous and D-precontinuous.

Proof. Follows from Lemma 1.1.

The following example shows a D-semi-continuous map need not be a D- α -continuous map.

EXAMPLE 2.06 : Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$, $\tau^* = \{\phi, X, \{a\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\} = \leq^*$. Let f be the identity map from (X, τ, \leq) onto (X^*, τ^*, \leq^*) . Then f is a D-semi-continuous map, but not a D- α -continuous map.

The following example shows that a D-pre-continuous map need not be a D- α -continuous.

EXAMPLE 2.07. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a, b\}\}$, $\tau^* = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$, and $\leq = \{(a, a), (b, b), (c, c)\} = \leq *$. Define a map $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by f(a) = b, f(b) = aand f(c) = c. Then f is a D-pre-continuous map but not a D- α -continuous map..

THEOREM 2.06. Let (X, τ, \leq) and (X^*, τ^*, \leq^*) be two topological ordered spaces.

Let $f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be a map. Then f is B- α -continuous iff it is B-semi-continuous and B-precontinuous.

Proof. Follows from Lemma 1.1.

The following example shows that a B-semi-continuous map need not be a $B-\alpha$ -continuous map.

EXAMPLE 2.08. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ and $\tau^* = \{\phi, X, \{a, b\}\}$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Define $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by f(a) = c, f(b) = a and f(c) = b. Then f is a B-semi-continuous but not a B- α -continuous.

The following example shows that a B-pre-continuous map need not be a $B-\alpha$ -continuous.

EXAMPLE 2.09. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a, b\}\}$ and $\tau^* = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Define a map $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by f(a) = b, f(b) = a and f(c) = c. Then f is a B-pre-continuous map but not a B- α -continuous map.

3. I- α -OPEN, D- α -OPEN AND B- α -OPEN MAPS.

DEFINITION 3.01. A function $f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ is called an I- α -open map (resp. D- α -open, B- α -open map if $f(G) \in I\alpha O(X^*)$ (resp. $f(G) \in D\alpha O(X^*)$, $f(G) \in B\alpha O(X^*)$) whenever G is an open subset of (X, τ, \leq) .

It is evident that every x- α -open map is an α -open map for x= I, D, B and that every B- α -open map is both I- α -open and D- α -open.

The following example shows that an α -open map need not be x- α -open for x= I, D, B.

EXAMPLE 3.01. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\} = \tau^* \text{and} \le = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Clearly (X, τ, \le) is a topological ordered space. Let f be the identity map from (X, τ, \le) onto itself. $\{b\}$ is an open set in X but $f(\{b\}) = \{b\}$ is not an I- α -open set, not a D- α -open set, not a B- α -open set. Thus f is not x- α -open map for x = I,D,B. Clearly f is an α -open map.

The following example shows that a D- α -open map need not be a B- α -open map.

EXAMPLE 3.02. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\} = \tau^*, \le = \{(a, a), (b, b), (c, c), (a, c)\}$ and $\le^* = \{(a, a), (b, b), (c, c), (a, c), (b, c)\}$. Let θ be the identity map from (X, τ, \le) onto (X^*, τ^*, \le^*) . θ is a D- α -open map but not a B- α -open map.

The following example shows that an I- α -open map need not be a B- α -open map.

EXAMPLE 3.03. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{a, c\}\} = \tau^*$ and $\leq = \{(a, a), (b, b), (c, c), (c, a), (b, c), (b, a)\} = \leq^*$. Let $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ be the identity map. Then f is an I- α -open map but not a B- α -open map.

3.01 Thus we have the following diagram

For a function $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$

,where $p \rightarrow q$ (resp. $p \leftarrow | \rightarrow q$) represents p implies q but q need not imply p (resp. p and q are independent of each other).

LEMMA 3.01. Let A be any subset of a topological ordered space (X, τ, \leq) . Then

1) $C(d\alpha cl(A)) = (C(A))^{i\alpha o}$. 2) $C(i\alpha cl(A)) = (C(A))^{d\alpha o}$. 3) $C(b\alpha cl(A)) = (C(A))^{b\alpha o}$.

Proof. $C(d\alpha cl(A)) = C \cap \{F/F \text{ is a decreasing } \alpha \text{-closed subset of } X \text{ containing } A \}$ = $\cup \{C(F)/F \text{ is a decreasing } \alpha \text{-closed subset of } X \text{ containing } A \}$ = $\cup \{G/G \text{ is an increasing } \alpha \text{-open subset of } X \text{ contained in } C(A) \}$ = $(C(A))^{i\alpha \alpha}$.

Proofs of (2) and (3) are analogous to as that of (1) and hence omitted.

The following theorem characterizes I- α -open functions.

THEOREM 3.01. For any function $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$, the following statements are equivalent.

- 1) f is an I- α -open map.
- 2) $f(A^0) \subseteq [f(A)]^{i\alpha 0}$ for any $A \subseteq X$.
- 3) $[f^{-1}(B)]^0 = f^{-1}(B^{i\alpha 0})$ for any $B \subseteq X^*$.

Proof. (1) => (3). Let $B \subseteq X^*$. Since $[f^{-1}(B)]^0$ is open in X, f is an I- α -open, $f((f^{-1}(B))^0) \subseteq f(f^{-1}(B)) \subseteq B$ and $f([f^{-1}(^1(B)]^0)$ is I- α -open in X*. Then $f((f^{-1}(B))^0) \subseteq B^{i\alpha 0}$ since $B^{i\alpha 0}$ is the largest increasing α -open set contained in B. Therefore $[f^{-1}(B)]^0 \subseteq f^{-1}(B^{i\alpha 0})$. (3) => (2). Replacing B by f(A) in (3), we have $[f^{-1}(f(A))]^0 \subseteq f^{-1}([f(A)]^{i\alpha 0})$. Since $A^0 \subseteq [f^{-1}(f(A))]^0$, we have $A^0 \subseteq f^{-1}([f(A)]^{i\alpha 0})$. $f(A^0) \subseteq f(f^{-1}([f(A)]^{i\alpha 0})) \subseteq [f(A)]^{i\alpha 0}$. Hence $f(A^0) \subseteq [f(A)]^{i\alpha 0}$.

(2) => (1). Let G be any open set in X. Then $f(G) = f(G^0) \subseteq [f(G)]^{i\alpha 0} \subseteq f(G)$. Therefore f(G) is an increasing α -open set in X*. So f is an I- α -open map.

The following two theorems give characterizations for D- α -open map and B- α -open maps, whose proofs are similar to as that of the above theorem.

THEOREM 3.02. For any function $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$, the following statements are equivalent.

- 1) f is a D- α -open map.
- 2) $f(A^0) \subseteq [f(A)]^{d\alpha 0}$ for any $A \subseteq X$.
- 3) $[f^{-1}(B)]^0 \subseteq f^{-1}(B^{d\alpha o})$ for any $B \subseteq X^*$.

THEOREM 3.03. For any function $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$, the following statements are equivalent.

- 1) f is a B- α -open map.
- 2) $[f(A^0] \subseteq [f(A)]^{b\alpha 0}$ for any $A \subseteq X$.
- 3) $[f^{-1}(\mathbf{B})]^0 \subseteq f^{-1}(\mathbf{B}^{b\alpha 0})$ for any $\mathbf{B} \subseteq \mathbf{X}^*$.

THEOREM 3.04. Let $f : (X, \tau, \leq_1) \rightarrow (Y, \sigma, \leq_2)$ and $g : (Y, \sigma, \leq_2) \rightarrow (Z, \eta, \leq_3)$ be any two mappings. Then gof : $(X, \tau, \leq_1) \rightarrow (Z, \eta, \leq_3)$ is x- α -open if f is open and g is x- α -open for x = I,D,B.

Proof. Omitted.

THEOREM 3.05 : Let (X, τ, \leq) and (X^*, τ^*, \leq^*) be two topological ordered spaces. Let $f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be a map. Then f is I- α -open map iff it is I-semi-open map and I-pre-open map.

Proof. Follows from Lemma 1.1.

The following example shows that an I-semi-open map need not be an I- α -open map.

EXAMPLE 3.04. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}\}$, $\tau^* = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (c, b)\} = \leq^*$ Define $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by f(a) = b, f(b) = c and f(c) = c. Then f is an I-semi-open map but not an I- α -open map.

The following example shows that an I-pre-open map need not be an I- α -open map.

EXAMPLE 3.05. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$, $\tau^{*} = \{\phi, X, \{a\}, \{b, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Let f be the identity map from (X, τ, \leq) onto (X^*, τ^*, \leq^*) . Then f is an I- pre-open map but not an I- α -open map.

THEOREM 3.06. Let (X, τ, \leq) and (X^*, τ^*, \leq^*) be two topological ordered spaces.

Let $f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be a map. Then f is a D- α -open map iff it is a D-semi-open map and a D-preopen map.

Proof. Follows from Lemma 1.1.

The following example shows that a D-semi-open map need not be a D- α -open map.

EXAMPLE 3.06. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}\}$, $\tau^* = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (b, c), (c, a), (b, a)\} = \leq^*$. Define $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by f(a) = b, f(b) = c and f(c) = c. Then f is a D-semi-open map but not a D- α -open map.

The following example shows that a D-pre-open map need not be a D- α -open map.

EXAMPLE 3.07. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$, $\tau^* = \{\phi, X, \{a\}, \{b, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Let f be the identity map from (X, τ, \leq) onto (X^*, τ^*, \leq^*) . Then f is a D-pre-open map but not a D- α -open map.

THEOREM 3.07. Let (X, τ, \leq) and (X^*, τ^*, \leq^*) be two topological ordered spaces.

Let $f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be a map. Then f is a B- α -open map iff it is a B-semi-open map and a B-preopen map.

Proof. Follows from Lemma 1.1.

The following example shows that a B-semi-open map need not be a $B-\alpha$ -open map.

EXAMPLE 3.08. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a, b\}\}$, $\tau^* = \{\phi, X, \{a\}\}$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Let $f: (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ be the identity map. Then f is a B-semi-open map but not a B- α -open map.

The following example shows that a B-pre-open map need not be a B- α -open map.

EXAMPLE 3.09. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$, $\tau^* = \{\phi, X, \{a\}, \{b, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Let f be the identity map from (X, τ, \leq) onto (X^*, τ^*, \leq^*) . Then f is a B-pre-open map but not an B- α -open map.

4. α-CLOSED, D-α-CLOSED AND B-α-CLOSED MAPS

DEFINITION 4.01. A function $f: (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ is called an I- α -closed (resp. D- α -closed, B- α -closed) map if $f(G) \in I\alpha C(X^*)$ (resp. $f(G) \in D\alpha C(X^*)$, $f(G) \in B\alpha C(X^*)$) whenever G is a closed subset of X. Clearly every x- α -closed map is a α -closed map for x = I,D,B and every B- α -closed map is both I- α -closed and D- α -closed map.

The following example shows that an α -closed map need not be a x- α -closed map, for x = I,D,B

EXAMPLE 4.01. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\} = \tau^*$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\} = \leq^*$. Clearly (X, τ, \leq) is a topological ordered space. Let f be the identity map from (X, τ, \leq) onto itself. $\{a, c\}$ is closed set, but $f(\{a, c\})$ is neither an increasing nor a decreasing α -closed set. Thus f is not x- α -closed map for x = I, D, B. Clearly f is α -closed map.

The following example shows that an I- α -closed map need not be a B- α -closed map.

EXAMPLE 4.02. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\} = \tau^*$, $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$ and $\leq^* = \{(a, a), (b, b), (c, c), (a, c), (b, c)\}$. Let θ be the identity map from (X, τ, \leq) onto (X^*, τ^*, \leq^*) . θ is I- α -closed map but not a B- α -closed map.

The following example shows that an D- α -closed map need not be a B- α -closed map.

EXAMPLE 4.03. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{c\}, \{b, c\}\} = \tau^*$, $\leq = \{(a, a), (b, b), (c, c), (a, c), (b, c), (a, c)\} = \leq *$ and $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ be the identity map. Then f is D- α -closed map but not a B- α -closed map.

4.01 Thus we have the following diagram

For a function $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$

,where $p \rightarrow q$ (resp. $p \leftarrow | \rightarrow q$) represents $p \Rightarrow q$, but q need not imply p (p and q are independent of each other)

The following theorem characterizes I- α -closed maps.

THEOREM 4.01. Let $f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be any map. Then f is I- α -closed iff iacl (f(A)) \subseteq f(cl(A)) for any A \subseteq X.

Proof. Necessity: Since f is an I- α -closed, f(cl(A)) is an increasing α -closed subset of X. Clearly $f(A) \subseteq f(cl(A))$. Therefore $i\alpha cl(f(A)) \subseteq f(cl(A))$ since $i\alpha cl(f(A))$ is the smallest increasing α -closed set in X* containing f(A).

Sufficiency: Let F be any α -closed subset of X. Then $f(F) \subseteq i\alpha cl(f(F)) \subseteq f(cl(F)) = f(F)$. Thus $f(F) = i\alpha cl(F)$. So f(F) is an increasing α -closed subset of X*. Therefore f is an I- α -closed map.

The following two theorems characterize D- α -closed maps and B- α -closed maps.

THEOREM 4.02. Let $f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be any map. Then f is D- α -closed iff dacl (A) \subseteq f(cl(A)) for every A \subseteq X.

Proof. Omitted.

THEOREM 4.03. Let $f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be any map. Then f is B- α -closed iff bacl (A) \subseteq f(cl(A)) for every A \subseteq X.

Proof. Omitted.

THEOREM 4.04. Let $f: (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ be a bijection. Then

- 1) f is an I- α -open map iff f is a D- α -closed map.
- 2) f is an I- α -closed map iff f is a D- α -open map.
- 3) f is a B- α -open map iff f is a B- α -closed map.

Proof.(1) Necessity. Let F be any closed subset of X. Then f(C(F)) is an increasing α -open subset of X*. Since f(C(F)) = C(f(F)) and C(f(F)) is an increasing α -open subset of X*, f(F) is a decreasing α -closed subset of X*. Therefore f is a D- α -closed map

Sufficiency: Let G be any open subset of X. Then f(C(G)) is a decreasing α -closed subset of X*. Since f is a bijection, we have f(C(G)) = C(f(G)). So f(G) is an increasing α -open subset of X*. Therefore f is an I- α -open map.

Proofs of (2) and (3) are similar to that of (1).

THEOREM 4.05. Let $f: (X, \tau, \leq_1) \rightarrow (Y, \sigma, \leq_2)$ and $g:(Y, \sigma, \leq_2) \rightarrow (Z, \eta, \leq_3)$ be any two mappings then gof : $(X, \tau, \leq_1) \rightarrow (Z, \eta, \leq_3)$ is x- α -closed map if f is closed and g is x- α -closed map for x=I,D,B.

Proof. Omitted

THEOREM 4.06. Let $f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be a bijection. Then the following statements are equivalent.

- 1) f is an I- α -open map.
- 2) f is a D- α -closed map.
- 3) f^{-1} is a D- α -continuous map.

Proof. (1) =>(2). Let f be an I- α -open map. Let F be a closed set of X, then C(F) is an open set. f(C(F)) is an increasing α -open set of X*. =>C(f(F)) is an increasing α -open set of X*. =>f(F) is a decreasing α -closed set of X*. =>f is D- α -closed map.

(2)=>(3). Let f be a D- α -closed map. Let F be a closed set in X, then f(F) is a decreasing α -closed set of X^{*}.

 $=>[f^{-1}]^{-1}$ (F) is a decreasing α -closed set of X*. $=>f^{-1}: X^* \rightarrow X$ is D- α -continuous map.

(3)=>(1) Let F be an open set in X. Then C(F) is a closed set in X. => $[f^{-1}]^{-1}(C(F))$ is a decreasing closed subset of X* => C(f(F)) is a decreasing closed set in X*. =>f(F) is an increasing open set in X*. =>f is an I- α -open map.

THEOREM 4.07. Let $f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be a bijection. Then the following are equivalent.

- 1) f is a D- α -open map.
- 2) f is an I- α -closed map.
- 3) f^{-1} is a D- α -continuous map.

Proof. Omitted.

THEOREM 4.08. Let $f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be a bijection. Then the following statements are equivalent.

- 1) f is a B- α -open map.
- 2) f is a B- α -closed map.
- 3) f^{-1} is a B- α -continuous map.

Proof. Omitted.

THEOREM 4.09. Let $f: (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ be an I- α -closed map and B, C $\subseteq X^*$. Then.

- 1) If U is an open neighborhood of $f^{-1}(B)$, then there exists a decreasing α -open neighborhood V of B such that $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$.
- 2) If $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint neighborhoods, then B and C have disjoint α -open neighborhoods.

Proof.1: Let U be an open neighborhood of $f^{-1}(B)$. Take C(V) = f(C(U)). Since f is an I- α -closed map and C(V) is closed, then C(V) = f(C(U)) is an increasing α -closed subset of X. Since $f^{-1}(B) \subseteq U$, then $C(V) = f(C(U)) \subseteq f(f^{-1}(C(U))) \subseteq C(B)$. Therefore $B \subseteq V$. Thus V is a decreasing α -open neighborhood B. => $f^{-1}(B) \subseteq f^{-1}(V)$. Further $C(U) \subseteq f^{-1}(f(C(U))) = f^{-1}(C(V)) = C(f^{-1}(V)) => f^{-1}(V) \subseteq U$. Thus $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$.

Proof.2: Let U_B , U_C be disjoint open neighborhoods of $f^{-1}(B)$, $f^{-1}(C)$, where B, $C \subseteq X^*$ From (1) there exists V_B , V_C such that $B \subseteq V_B$, $C \subseteq V_C$. Also $f^{-1}(B) \subseteq f^{-1}(V_B) \subseteq U_B$, $f^{-1}(C) \subseteq f^{-1}(V_C) \subseteq U_C$ where V_B , V_C are decreasing closed neighborhoods of B and C respectively. Since $U_B \cap U_C = \phi$; $f^{-1}(V_B) \cap f^{-1}(V_C) = \phi$. => $V_B \cap V_C = \phi$.

Similarly we have the following two theorems (proofs are omitted) regarding D- α -closed maps and B- α -closed maps.

THEOREM 4.10. Let $f: (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ be a D- α -closed map and B, C, \subseteq , X*. Then

1. If U is an open neighborhood of f^{-1} (B), then there exists an increasing α -open neighborhood V of B such that f^{-1} (B) $\subseteq f^{-1}$ (V) $\subseteq U$

2. If $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint neighborhoods, then $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint increasing α -open neighborhoods.

THEOREM 4.11. Let $f: (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ be a B- α -closed map and B, C, $\subseteq X^*$. Then

1. If U is an open neighborhood of $f^{-1}(B)$, then there exists an α -open neighborhood V of B, which is balanced such that $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$

2. If $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint neighborhoods, then $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint α -open neighborhoods, which are balanced.

THEOREM 4.12. Let (X, τ, \leq) and (X^*, τ^*, \leq^*) be two topological ordered spaces. Let $f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be a map. Then f is an I- α -closed map iff it is an I-semi-closed map and I-preclosed map.

Proof. Follows from Lemma 1.1.

The following example shows that an I-semi-closed map need not be an I- α -closed map.

EXAMPLE 4.04. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}\}$, $\tau^* = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (c, a), (b, c), (b, a)\} = \leq^*$. Define a map $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by f(a) = c, f(b) = a and f(c) = a. Then f is an I-semi-closed map, but not an I- α -closed map.

The following example shows that an I-pre-closed map need not be an I- α -closed map.

EXAMPLE 4.05. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$, $\tau^* = \{\phi, X, \{a\}, \{b, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Define a map $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by f(a) = c, f(b) = b and f(c) = a. Then f is an I-pre-closed map but not an I- α -closed map.

THEOREM 4.13. Let (X, τ, \leq) and (X^*, τ^*, \leq^*) be two topological ordered spaces. Let $f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be a map. Then f is a D- α -closed map iff it is a D-semi-closed map and a D-pre-closed map.

Proof. Follows from Lemma 1.1.

The following example shows that a D-semi-closed map need not be a D- α -closed map.

EXAMPLE 4.06. Let $X = \{a, b, c\} = X^*, \tau = \{\phi, X, \{a\}\}, \tau^* = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (c, b)\} = \leq^*$. Define $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by f(a) = c, f(b) = a and f(c) = a. Then f is a D-semi-closed map, but not a D- α -closed map.

The following example shows that a D-pre-closed map need not be a D- α -closed map.

EXAMPLE 4.07. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$, $\tau^* = \{\phi, X, \{a\}, \{b, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Define a map $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by f(a) = c, f(b) = b and f(c) = a. Then f is a D-pre-closed map but not a D- α -closed map.

THEOREM 4.14. Let (X, τ, \leq) and (X^*, τ^*, \leq^*) be two topological ordered spaces. Let $f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be a map. Then f is a B- α -closed map iff it is a B-semi-closed map and a B-pre-closed map.

Proof. Follows from Lemma 1.1.

The following example shows that a B-semi-closed map need not be a B- α -closed map.

EXAMPLE 4.08. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a, b\}\}$, $\tau^{*} = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Define $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by f(a) = c, f(b) = b and f(c) = a. Then f is a B-semi-closed map but not a B- α -closed map.

The following example shows that a B-pre-closed map need not be a B- α -closed map.

EXAMPLE 4.09. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$, $\tau^* = \{\phi, X, \{a\}, \{b, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Define a map $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by f(a)=c, f(b)=b and f(c)=a. Then f is a B-pre-closed map but not a B- α -closed map.

5. I-α-HOMEOMORPHISMS, D-α-HOMEOMORPHISMS AND B-α-HOMEOMORPHISMS

We introduce the following definition

DEFINITION 5.01. A bijection $f: (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ is called an I- α -homeomorphism (resp. a D- α -homeomorphism) if both f and f^{-1} are I- α -continuous (resp. D- α -continuous, B- α -continuous).

Clearly every x- α -homeomorphism is an α -homeomorphism for x = I, D, B and every B- α -homeomorphism is both an I- α -homeomorphism and a D- α -homeomorphism.

The following example shows that an α -homeomorphism need not be a x- α -homeomorphism for x= I, D, B.

EXAMPLE 5.01. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\} = \tau^*$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Clearly (X, τ, \leq) is a topological ordered space. Let f be the identity map from (X, τ, \leq) onto itself. $\{a, c\}$ is closed set but $f^{-1}(\{a, c\}) = \{a, c\}$ is neither an increasing nor a decreasing α -closed

set. Thus f is not x- α -continuous for x= I, D, B. f is an α -homeomorphism but not a homeomorphism for x = I,D,B.

The following example shows that a D- α -homeomorphism need not be a B- α -homeomorphism.

x-α-

EXAMPLE 5.02. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{a, b\}\} = \tau^*$ and $\leq = \{(a, a), (b, b), (c, c), (b, a)\} = \leq^*$. Let g be the identity map from (X, τ, \leq) onto (X^*, τ^*, \leq^*) . g is a D- α -homeomorphism but not a B- α -homeomorphism.

EXAMPLE 5.03. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\} = \tau^*$ and $\leq = \{(a, a), (b, b), (c, c), (a, c), (b, c)\} = \leq^*$. Let $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ be an identity map. Then f is an I- α -homeomorphism but not a B- α -homeomorphism.

5.01 Thus we have the following diagram

For a function $f: (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$

,where $p \rightarrow q$ (resp. $p \leftarrow | \rightarrow q$) represents p implies q but q does not imply p (resp. p and q are independent of each other)

THEOREM 5.01. Let $f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be a bijective I- α -continuous map. Then the following are equivalent.

- 1) f is an I- α -homeomorphism.
- 2) f is a D- α -open map.
- 3) f is an I- α -closed map.

Proof. Follows from the theorem 4.07.

THEOREM 5.02. Let $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ be bijective D- α -continuous map. Then the following are equivalent.

- 1) f is a D- α -homeomorphism.
- 2) f is an I- α -open map.
- 3) f is a D- α -closed map.

Proof. Follows from the theorem 4.06.

THEOREM 5.03. Let $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ be a bijection and B- α -continuous map. Then the following are equivalent.

- 1) f is a B- α -homeomorphism.
- 2) f is a B- α -open map.
- 3) f is a B- α -closed map.

THEOREM 5.04. Let (X, τ, \leq) and (X^*, τ^*, \leq^*) be two topological ordered spaces. Let $f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be a map. Then f is an I- α -homeomorphism iff it is I-homeomorphism and I-pre-homeomorphism.

Proof. Follows from Lemma 1.1.

The following example shows that an I-semi-homeomorphism need not be an I- α -homeomorphism.

EXAMPLE 5.04. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{a, b\}\} = \tau^*$ and $\leq = \{(a, a), (b, b), (c, c), (c, a), (b, c), (b, a)\} = \leq^*$. Define a map $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by f(a) = a, f(b) = c and f(c) = b. Then f is an I-semi-homeomorphism but not an I- α -homeomorphism.

The following example shows that an I-pre-homeomorphism need not be an I- α -homeomorphism.

EXAMPLE 5.05. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and $\tau^* = \{\{\phi, X, \{a\}, \{b, c\}\}\$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Define a map $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by f(a) = b, f(b) = a and f(c) = c. Then f is an I-pre-homeomorphism but not an I- α -homeomorphism.

THEOREM 5.05. Let (X, τ, \leq) and (X^*, τ^*, \leq^*) be two topological ordered spaces.

Let $f: (X, \tau, \leq) \to (X^*, \tau, \leq^*)$ be a map. Then f is a D- α -homeomorphism iff it is a D-semi-homeomorphism and a D-pre-homeomorphism.

Proof. Follows from Lemma 1.1.

The following example shows that a D-semi- homeomorphism need not be a D- α -homeomorphism.

EXAMPLE 5.06. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{a, c\}\} = \tau^*$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (a, c)\} = \leq^*$. Define a map $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by f(a) = a, f(b) = c and f(c) = b. Then f is D-semi-homeomorphism but not a D- α -homeomorphism.

The following example shows that a D-pre-homeomorphism need not be a D- α -homeomorphism.

EXAMPLE 5.07. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and $\tau^* = \{\{\phi, X, \{a\}, \{b, c\}\}\)$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Define a map $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by f(a) = b, f(b) = a and f(c) = c. Then f is a D-pre-homeomorphism but not a D- α -homeomorphism.

THEOREM 5.06. Let (X, τ, \leq) and (X^*, τ^*, \leq^*) be two topological ordered spaces.

Let $f: (X, \tau, \leq) \to (X^*, \tau, \leq^*)$ be a map. Then f is a B- α -homeomorphism iff it is a B-semi-homeomorphism and a B-pre-homeomorphism.

Proof. Follows from Lemma 1.1.

The following example shows that a B-semi- homeomorphism need not be a B-α-homeomorphism.

EXAMPLE 5.08. Let X = {a, b, c} = X*, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\tau^* = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$, $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Define a map f : $(X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by f(a) = b, f(b) = a and f(c) = c. Then f is a B-semi- homeomorphism but not a B- α -homeomorphism.

The following example shows that a B-pre-homeomorphism need not be a B- α -homeomorphism.

EXAMPLE 5.09. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and $\tau^* = \{\{\phi, X, \{a\}, \{b, c\}\}\)$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Define a map $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by f(a) = b, f(b) = a and f(c) = c. Then f is a B-pre-homeomorphism but not a B- α -homeomorphism.

Standard separation axioms for topological ordered spaces have been studied systematically by S.D.McCartan [6, 7] Now we examine the separation properties of range spaces under some of these mappings.

DEFINITION 5.02. A topological ordered space (X, τ, \leq) is said to be upper strongly T₁-ordered iff for each pair of elements $a \leq b$ in X, there exists a decreasing τ -open neighborhood W of b such that $a \notin W$.

DEFINITION 5.03. A topological ordered space (X, τ, \leq) is said to be lower strongly T₁-ordered iff for each pair of elements $a \leq b$ in X, there exists an increasing τ -open neighborhood W of a such that $b \notin W$. (X, τ, \leq) is said to be strongly T₁ ordered iff it is both lower and upper strongly T₁-ordered.

DEFINITION 5.04. A topological ordered space (X, τ, \leq) is said to be upper strongly α -T₁-ordered iff for each pair of elements $a \leq b$ in X₁ there exists a decreasing τ - α -open neighborhood W of b such that $a \notin W$.

DEFINITION 5.05. A topological order space (X, τ, \leq) is said to be lower strongly α -T₁-ordered iff for each pair of elements $a \leq b$ in X there exists an increasing τ - α -open neighborhood W of a such that $b \notin W$. (X, τ, \leq) is said to be strongly T₁-ordered iff it is both lower and upper strongly α -T₁-ordered

THEOREM 5.07. Let $f : (X, \tau, \le) \to (X^*, \tau^*, \le^*)$ be a bijective I- α -open map as well as a poset isomorphism (i.e. $x \le y$ iff $f(x) \le^* f(y)$: $\forall x, y \in X$). If (X, τ, \le) is a lower strongly T_1 -ordered space, then (X^*, τ^*, \le^*) is a lower strongly α - T_1 -ordered space.

Proof. Let $a,b \in X^*$ such that $a \leq * b$. Then $f^{-1}(a) \leq f^{-1}(b)$. Since (X, τ, \leq) is a lower strongly T_1 -ordered space, there exists an increasing open neighborhood U of $f^{-1}(a)$ such that $f^{-1}(b) \notin U$. Thus f(U) is an increasing α -open neighborhood of $f(f^{-1}(a)) = a$ such that $b = f(f^{-1}(b)) \in f(U)$. Therefore (X^*, τ^*, \leq^*) is a lower strongly α - T_1 -ordered space.

THEOREM 5.08. Let $f : (X, \tau, \le) \to (X^*, \tau^*, \le^*)$ be a bijective D- α -open map as well as a poset isomorphism. If (X, τ, \le) is an upper strongly α -T₁-ordered space then (X^*, τ^*, \le^*) is upper strongly α -T₁-ordered space.

Proof. Similar to as that of the theorem 5.07.

THEOREM 5.09. Let $f : (X, \tau, \le) \to (X^*, \tau^*, \le^*)$ be a bijective B- α -open map. If f is a poset isomorphism and (X, τ, \le) is strongly T₁-ordered space, then (X^*, τ^*, \le^*) is a strongly α -T₁-ordered space.

Proof. Follows from the theorems 5.07 and 5.08.

DEFINITION 5.06. A topological ordered space (X,τ, \leq) is called strongly α -T₂-ordered (or strongly α -Hausdorff ordered or strongly α -Hausdorff closed) iff for each pair of elements $a \leq b$ in X, there exists α -open neighborhoods U and V of a and b respectively such that U is an increasing set and V is a decreasing set.

THEOREM 5.10. Let $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ be bijective B- α -open map. If (X, τ) is a Hausdorff space, then (X^*, τ^*, \leq^*) is strongly α -Hausdorff ordered space.

Proof. Let a, $b \in X^*$ such that a $\leq^* b$. Then $f^{-1}(a) \neq f^{-1}(b)$. Since H is Hausdorff, there exists disjoint τ -open neighborhoods U and V of $f^{-1}(a)$ and $f^{-1}(b)$ respectively. Since f is B- α -open then f(U) and f(V) are two disjoint τ^* , α -open neighborhoods of a and b respectively such that f(U) is an increasing set and f(V) is a decreasing set. Therefore (X^*, τ^*, \leq^*) is a strongly Hausdorff ordered space.

DEFINITION 5.07. A topological ordered space (X,τ, \leq) is said to be a lower (an upper) strongly regular ordered space iff for each element a \notin F there exists τ -open neighborhoods U of a and V of F such that U is an increasing (a decreasing) and V is a decreasing (an increasing) set in X and U \cap V = ϕ .

DEFINITION 5.08. A topological ordered space (X,τ, \leq) is said to be a lower (upper) strongly α -regular ordered space iff for each decreasing (increasing) τ -closed set F and each element $a \in F$, there exist $\tau \alpha$ -open neighborhoods U of a and V of F such that U is an increasing (a decreasing) and V is a decreasing (an increasing) set in X and $U \cap V = \phi$. X is said to be strongly α -regular if it is upper and lower strongly α -regular ordered space.

THEOREM 5.11. Let $f: (X, \tau, \le) \to (X^*, \tau^*, \le^*)$ be a bijective D-continuous map and a B- α -open map. If (X, τ) is regular space, then (X^*, τ^*, \le^*) is a lower strongly α -regular ordered space.

Proof. Let F be a decreasing closed subset of X* and $a \in X^*$ such that $a \notin F$. Since f is D-continuous f^{-1} (F) is a decreasing closed set in X. Since $f^{-1}(a) \notin f^{-1}(F)$ and X is regular, there exists two disjoint open neighborhoods U of $f^{-1}(a)$, V of $f^{-1}(F)$ in X. Since f is B- α -open, clearly $f^{-1}(U)$ is an increasing α -open set and f(V) is a decreasing α -open in X*. Also $a \in f(U)$, $F \subseteq f(V)$. (X*, τ^* , \leq^*) is lower strongly α -regular ordered space.

THEOREM 5.12. Let $f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be a bijective D-continuous, B-open map. If (X, τ) is a regular space, then (X^*, τ^*, \leq^*) is an upper strongly α -regular ordered space.

Proof. Analogous to as that of the theorem 5.11.

THEOREM 5.13. Let $f: (X, \tau, \le) \to (X^*, \tau^*, \le^*)$ be a B- α -homomorphism. If (X, τ) is a regular space, then (X^*, τ^*, \le^*) is a strongly α -regular ordered space.

DEFINITION 5.09. A topological ordered space (X, τ, \leq) is said to be a strongly α -normally ordered space iff for each pair of disjoint τ -closed sets F_1 and F_2 in X, where F_1 is increasing F_2 is decreasing; there exists two disjoint τ - α -open neighborhoods U_1 of F_1 and U_2 of F_2 such that U_1 is increasing and U_2 is a decreasing in X.

DEFINITION 5.10. A topological ordered space (X, τ, \leq) is said to be a strongly α -T₃ -ordered iff it is both strongly α -T₁-ordered and strongly α -regular ordered

DEFINITION 5.11. A topological ordered space (X, τ, \leq) is said to be a strongly α -T₄-ordered space iff it is both strongly α -T₁-ordered and strongly α -normally ordered.

THEOREM 5.14. Let $f: (X, \tau, \le) \to (X^*, \tau^*, \le^*)$ be a bijective B-continuous and B- α -open map. Then:

- 1. If (X, τ) is normal then (X^*, τ^*, \leq^*) is a strongly α -normally ordered space.
- 3. If f is a poset isomorphism and (X, τ) is T₃, then (X^*, τ^*, \leq^*) is strongly α -T₃-ordered space (Follows from the 5.09, 5.11).
- 2. If f is a poset isomorphism and (X, τ) is T₄, then (X^*, τ^*, \leq^*) is strongly α -T₄-ordered space. (Follows from 5.09, 5.14(1)).

ACKNOWLEDGE: The first author is thankful to his guide Professor Y.V.Reddy, Department of Science and Humanities, University College of Engineering & Technology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur (Dt.), Andhra Pradesh, India, PIN-522 510. We have been thankful to M.K.R.S.Veera Kumar for proposing this topic and giving the guidelines to prepare this paper.

REFERENCES:

- [1]. K. Krishna Rao and R. Chudamani, Semi-Homeomorphisms in Topological Ordered Spaces, International Journal of Mathematical Sciences, Technology and Humanities, **39**(2012),383-397.
- [2]. K. Krishna Rao and R. Chudamani, Pre-Homeomorphisms in,Topological Ordered Spaces International Journal of Mathematical Sciences, Technology and Humanities, **41**(2012),408-421.
- [3]. N. Levine Semi-open sets and Semi-continuity in topological spaces, Amer. Math. Monthly, **70** (1963), 36-41.
- [4]. A. S. Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On pre-continuous and weak pre-continuous mappings, Proc. Math and Phys. Soc. Egypt, **53** (1982), 47-53.
- [5]. A.S. Mashhour, I.A Hasanein and S.N El-Deeb, α -continuous and α -open mappings, Acta Math. Hung., **41**(3-4)(1983),213-218.
- [6]. McCartan S.D, On the H-ordered interval topology, J.London Math. Soc, Second Series, 1, Part 2, (1969), 274-278.
- [7]. McCartan S.D, Separation axioms for topological ordered spaces, Proc. Camb.Phil Soc, **64**, (1968) 965-973.
- [8]. Nachbin. L, Topology and order, D. Van Nostrand Inc, Princeton, Newjersey (1965).
- [9]. O. Njastad, On some classes of nearly open sets, Pacific J.Math., 15(1965), 961-970.

G. Cool

[10]. M. K. R. S. Veera Kumar, Homeomorphisms in topological ordered spaces, Acta Ciencia Indica, XXVIII (M)(1)(2002), 67-76.