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Abstract 

An attempt has been made to study the unsteady oscillatory convective heat and mass 

transfer of a viscous fluid through a porous medium in a rotating channel. The velocity, 

temperature and concentration has been analysed for various governing parameters.  
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1. Introduction:  

The combined rotational and buoyancy effects are very common in nature. Most 

flows has regions of rotations as well as stratification. Buoyancy and rotational effects are 

often comparable in geophysical process. Convective transport in a rotating atmosphere over 

a heated surface gives rise to typhoons and other rising atmosphere circulations. The unsteady 

flow of a rotating viscous fluid has been studied by several authors to analyse the growth and 

development of boundary layer associated with geothermal flows for applications in 

geophysical fluid dynamics. [1-7] Rao have made an initial value investigation of the 

combined free and forced convection effects in an unsteady hydro magnetic viscous 

incompressible rotating fluid between two discs under a uniform transfers magnetic field. 

Nagaraja [5] has investigated combined effects of heat and mass transfer flow of a viscous 

incompressible fluid through a porous medium in a rotating horizontal channel bounded by 

the flat walls. Prasad [7] has studied the mixed convective heat and mass transfer flow of a 

viscous fluid through a porous medium in a rotating parallel channel in the presence of a 

constant heat source.  

In this paper we deal with the oscillatory flow of a combined effect of heat and mass 

transfer flow of a viscous incompressible fluid through a porous medium in a rotating 

horizontal channel bounded by flat walls. The perturbation in the flow is created by the non 

tensional oscillations of the lower plate. The solutions of velocity field, temperature and 
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concentration distributions are obtained. The shear stress, the rate of heat and mass transfer 

has been evaluated for different variations of the governing parameters. 

2. Formulation of the problem:  

We consider the unsteady flow of an incompressible viscous fluid through a  porous medium 

bounded by two parallel plates. In the undisturbed states both the plates and the fluid rotate 

with the same angular velocity (Ω) and are maintained at constant temperature and 

concentration. The lower plate performs non tensional oscillations in its own plane.  

The plates are cooled or heated by constant temperature gradient in some direction parallel to 

the plane of the plates. We choose a Cartesian coordinate system O(x,y,z) such that the plates 

are at z=0 and z=1 and the z axis coinciding with the axis of rotation of the plates. Neglect 

the soret and doffer effect, the unsteady hydrodynamic boundary layer equations of motions 

with respect to a rotating frame moving with angular velocity Ω are the momentum equations 

𝝏𝒖
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𝝏𝒑
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𝒗

𝒌
 𝒗                                                     (2)       
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𝟏
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𝝏𝒛
 − 𝒈 𝟏 − 𝜷 𝑻 − 𝑻𝟎 − 𝜷. 𝑪 − 𝑪𝟎                                          (3) 

The energy equation 
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  𝑻 − 𝑻𝟎 = 𝝀

𝝏𝟐

𝝏𝒛𝟐
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𝟐

+ (
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𝒌𝟏
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(4)   

The diffusion equation 

 
𝝏

𝝏𝒕
+ 𝒖

𝝏

𝝏𝒙
+ 𝒗

𝝏

𝝏𝒚
  𝑪 − 𝑪𝟎 = 𝑫𝟏

𝝏

𝝏𝒛𝟐
 𝑪 − 𝑪𝟎                                                (5) 

Where u, v are velocity components along x and y directions respectively, p is the pressure 

including the centrifugal  force , ρ is the density, k is the permeability constant, µ is the 

coefficient of viscosity, λ is the thermal diffusivity, D1 is the chemical molecular diffusivity, 

β is the coefficient of thermal expansion and β* is the volumetric  coefficient of expansion 

with mass fraction. Combining the equation ( 2.1) and( 2.2) we obtain 

𝝏𝒒

𝝏𝒕
− 𝟐𝒊𝜴𝒒 = −

𝟏

𝝆
 
𝝏𝒑

𝝏𝒙
+ 𝒊

𝝏𝒑

𝝏𝒚
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𝝏𝒒𝟐

𝝏𝒛𝟐
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𝒗

𝒌
 𝒒                                                 (6) 

Where q=u+iv 

Integrating  equation ( 2.3) we obtain 

𝒑

𝝆
= −𝒈𝒛 + 𝜷𝒈  𝑻 − 𝑻𝟎 𝒅𝒛+𝛃.𝐠  𝐂 − 𝐂𝟎 𝐝𝐳+Ф (ξ,ξ)                             (7) 
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Where 

𝝃 = 𝒙 − 𝒊𝒚, 𝝃 =x+iy 

Using (7), equation (6) can be written as  

𝝏𝒒

𝝏𝒕
− 𝟐𝒊𝜴𝒒 − 𝒗

𝝏𝒒𝟐

𝝏𝒛𝟐
+  

𝒗

𝒌
 𝒒 = −𝟐𝜷𝒈

𝝏

𝝏𝝃
 𝑻 − 𝑻𝟎 − 𝟐𝜷.𝒈

𝝏

𝝏𝝃
(𝑪 − 𝑪𝟎)        (8) 

Since q= q (z,t), equation (2.8 )is valid if the temperature and concentration distributions are 

of the form  

𝑻 − 𝑻𝟎 = 𝜶𝟏𝒙 + 𝜷𝟏 + 𝜽𝟏 𝒛, 𝒕  

𝑪 − 𝑪𝟎 = 𝜶𝟐𝒙 + 𝜷𝟐𝒚 + 𝜽𝟐(𝒛, 𝒕) 

 

Where  α1,β
1,

α2,β2
 are the gradients of the temperature and concentration along O(x,y) 

directions respectively,θ1 z, t , C1(z, t) are the arbitrary functions of z and t. we take  

𝑻𝟎 + 𝜶𝟏𝒙 + 𝜷𝟏𝒚 + 𝜽𝟏𝒘𝟏  and  𝑻𝟎 + 𝜶𝟏𝒙 + 𝜷𝟏𝒚 + 𝜽𝟏𝒘𝟐,𝑪𝟎 + 𝜶𝟐𝒙 + 𝜷𝟐𝒚 + 𝑪𝟏𝒘𝟏 

And  𝑪𝟎 + 𝜶𝟐𝒙 + 𝜷𝟐𝒚 + 𝑪𝟏𝒘𝟐 

To be temperature and concentration of lower and upper plates respectively,   for  t > 0. 

Substituting (2.7) and ( 2.6) using( 2.8) we get 

𝝏𝒒

𝝏𝒕
= 𝟐𝒊𝜴𝒒 +

𝒗

𝒌
𝒒 − µ

𝝏𝒒𝟐

𝝏𝒛𝟐
+ 𝜷𝒈𝑨 𝒛 + 𝜷𝒈𝑩 𝒛 = 𝑫𝟐                                         (9)                                                

Where   𝑫𝟐 =  ∅ 𝝉𝒀, 𝝉 𝒀  𝛕𝐘 

A=𝛂𝟏 + 𝐢𝛃𝟏 and   B=𝛂𝟐 + 𝐢𝛃𝟐 

Introducing non dimensional variables (z,t,q,θ,c) 

𝒛 =
𝒛

𝑳
,  𝒕 =

𝒕𝒗

𝑳𝟐
  , 𝒒 =

𝒕𝒗

𝑳𝟐
 , 𝒘 =

𝒘𝑳 𝟐

𝒗𝟐
  

𝜽 =
𝜷𝒈𝑳𝟑 𝜽𝟏−𝜽𝟏𝒘𝟏   ,   

𝒗𝟐
  

𝑪 =
𝜷𝒈𝑳𝟑 𝑪𝟏−𝑪𝟏𝒘𝟏 

 

𝒗𝟐
  

The governing equations in the non dimensional  form are  

𝒒𝒛𝒛 −  𝑫−𝟏 − 𝟐𝒊𝑬−𝟏 𝒒 − 𝒒𝟏 = 𝑮 𝟏 + 𝑵 𝒛 − 𝑹                                        (10) 

𝑷 𝜽𝟏 + 𝑮𝟏𝒖 + 𝑮𝟐𝒗 = 𝜽𝒛𝒛 + 𝑬𝒄𝑫
−𝟏𝒒. 𝒒                                                     (11) 
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𝑺𝒄 𝑪𝟏 + 𝑮𝟏𝒄𝒖 + 𝑮𝟐𝒄𝝁 = 𝑪𝒛𝒛                                                                     (12) 

Where 

𝑬 =
𝒗

𝑳𝟐𝜴
 [Ekmann number] 

𝑫−𝟏 =
𝑳𝟐

𝒌
 Darcy parameter  

 𝑮𝟏, 𝑮𝟐 =
𝜷𝑮𝑳𝟒

𝜸𝟐
(𝜶𝟏, 𝜷𝟏)[Grashofnumber] 

 𝑮𝟏𝒄, 𝑮𝟐𝒄 =
𝜷 𝑮𝑳𝟒

𝒗𝟐
 𝜶𝟐, 𝜷𝟐 [modified Grashof number] 

𝑹 =
𝑳𝟑𝑫

𝒗𝟐
 𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑛𝑢𝑚𝑏𝑒𝑟  

𝑷 =
𝒗

𝝀
 𝑃𝑟𝑎𝑛𝑑𝑡𝑙 𝑛𝑢𝑚𝑏𝑒𝑟  

𝑫−𝟏 =
𝑳𝟐

𝒌𝟏

 𝐷𝑎𝑟𝑐𝑦 𝑛𝑢𝑚𝑏𝑒𝑟  

𝑬𝒄 = 𝜷𝒈𝑳𝑷 𝐸𝑐𝑘𝑒𝑟𝑡 𝑛𝑢𝑚𝑏𝑒𝑟  

𝑺𝒄 =
𝒗

𝑫
 𝑆𝑐ℎ𝑚𝑖𝑑𝑡𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟  

𝑮 = 𝑮𝟏 + 𝒊𝑮𝟐 ,                   𝑮𝒄 = 𝑮𝟏𝒄 + 𝒊𝑮𝟐𝒄 

The boundary conditions in the non-dimensional form are 

𝒒 𝒛, 𝒕 = 𝒂𝒆𝒊𝒘𝒕 + 𝒃𝒆−𝒊𝒘𝒕  𝒐𝒏 𝒛 = 𝟎 

𝒒 𝒛, 𝒕 = 𝟎  𝒐𝒏 𝒛 = 𝟏 

𝜽 𝒛, 𝒕 = 𝟎 , 𝑪 𝒛, 𝒕 = 𝟎  𝒐𝒏 𝒛 = 𝟎 

𝜽 𝒛, 𝒕 =
𝜷 𝒈𝑳𝟑 𝜽𝟏𝒘𝟐−𝜽𝟏𝒘𝟏 

𝒗𝟐
= 𝜽𝟎 , 𝑪 𝒛, 𝒕 =

𝜷𝒈𝑳𝟑 𝑪𝟏𝒘𝟐−𝑪𝟏𝒘𝟏 
 =𝑪𝟎

𝒗𝟐
  𝒐𝒏 𝒛 = 𝟏    (13) 

In view of the boundary conditions (13)we have assumed the velocity,temperature and 

concentration distributions as follows(7&12) 

𝒒 𝒛, 𝒕 = 𝒇 𝒛 + 𝒇𝟏 𝒛 𝒆
𝒊𝒘𝒕 + 𝒇𝟐 𝒛 𝒆

−𝒊𝒘𝒕 + 𝒇𝟑 𝒛 𝒆
𝟐𝒊𝒘𝒕 + 𝒇𝟒 𝒛 𝒆

−𝟐𝒊𝒘𝒕      (14) 

𝜽 𝒛, 𝒕 = 𝒈 𝒛 + 𝒈𝟏 𝒛 𝒆
𝒊𝒘𝒕 + 𝒈𝟐 𝒛 𝒆

−𝒊𝒘𝒕 + 𝒈𝟑 𝒛 𝒆
𝟐𝒊𝒘𝒕 + 𝒈𝟒 𝒛 𝒆

−𝟐𝒊𝒘𝒕    

𝑪 𝒛, 𝒕 = 𝑯 𝒛 + 𝑯𝟏 𝒛 𝒆
𝒊𝒘𝒕 + 𝑯𝟐 𝒛 𝒆

−𝒊𝒘𝒕 + 𝑯𝟑 𝒛 𝒆
𝟐𝒊𝒘𝒕 + 𝑯𝟒 𝒛 𝒆

−𝟐𝒊𝒘𝒕  
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Substituting (14) in (10)-(12) and comparing the corresponding terms the equation reduces to 

𝒇𝒛𝒛 − 𝒉𝟐𝒇 = 𝑮 𝟏 + 𝑵 𝒛 − 𝑹                                         (15) 

𝒈𝒛𝒛 = −𝑷𝟏 𝒇  
𝟐

+ 𝟐𝑹𝒆 𝒇𝟏
𝟏
𝒇 𝟐  –𝑷𝟐   𝒇 𝟐 + 𝟐𝑹𝒆𝒇𝟏𝒇 𝟐 + 𝑷𝑮𝟏𝑹𝒆 𝒇 + 𝑷𝑮𝟐𝑰𝑴 𝒇                                                                                                        

(16) 

𝑯𝒛𝒛 = 𝑺𝒄   𝑮𝟏𝒄𝑹𝒆 𝒇 + 𝑮𝟏𝒄𝑰𝒎 𝒇                                                                  (17)     

The corresponding boundary conditions are  

𝒇 = 𝟎 ; 𝒈 = 𝟎 ;𝑯 = 𝟎 ; 𝒐𝒏 𝒛 = 𝟎                                                                   (18) 

𝒇 = 𝟎 ; 𝒈 = 𝟏 ;𝑯 = 𝟏  𝒐𝒏 𝒛 = 𝟏                                                                         

 And 

𝒇𝟏,𝒛𝒛 −  𝒉𝟐 + 𝒊𝒘 𝒇𝟏 = 𝟎                                                                                (19) 

𝒈𝟏,𝒛𝒛 −  𝒊𝑷𝒘 𝒈𝟏 = −𝟐𝑷𝟏𝑹𝒆 𝒇  𝒇 𝟏 − 𝑷𝟐𝟐𝑹𝒆 𝒇𝒇 𝟏 + 𝑷𝑮𝟏𝑹𝒆 𝒇𝟏 + 𝑷𝑮𝟐𝑰𝒎  𝒇𝟏                                                                                                      

(20)                                                   

𝑯𝟏,𝒛𝒛 −  𝒊𝑺𝒄𝒘 𝑯𝟏 = 𝑺𝒄𝑮𝟏𝒄𝑹𝒆 𝒇𝟏 + 𝑺𝒄𝑮𝟐𝑪 𝑰𝒎  𝒇𝟏                                   (21)  

     The corresponding boundary conditions are    

𝒇𝟏 = 𝒂;   𝒈𝟏 = 𝟎;𝑯𝟏 = 𝟎 𝒐𝒏 𝒛 = 𝟎     

𝒇𝟏 = 𝟎;   𝒈𝟏 = 𝟎;𝑯𝟏 = 𝟎 𝒐𝒏 𝒛 = 𝟏                                                                (22) 

And 

𝒇𝟐,𝒛𝒛 −  𝒉𝟐 − 𝒊𝒘 𝒇𝟐 = 𝟎                                                                             (23) 

𝒈𝟏,𝒛𝒛 +  𝒊𝑷𝒘 𝒈𝟏 = −𝟐𝑷𝟏𝑹𝒆 𝒇 𝒇 𝟏 − 𝑷𝟐𝟐𝑹𝒆 𝒇𝒇 𝟏 + 𝑷𝑮𝟏𝑹𝒆 𝒇𝟏 + 𝑷𝑮𝟐𝑰𝒎 𝒇𝟏                                                                                                    

(24) 

𝑯𝟐,𝒛𝒛 +  𝒊𝑷𝒘 𝑯𝟐 = 𝑺𝒄 𝑮𝟏𝒄𝑹𝒆 𝒇𝟐 + 𝑮𝟐𝒄𝑰𝒎 𝒇𝟐                                     (25) 

The corresponding boundary conditions are 

𝒇𝟐 = 𝒃 ; 𝒈𝟐 = 𝟎; 𝑯𝟐 = 𝟎   𝒐𝒏 𝒛 = 𝟎                                                          (26) 

𝒇𝟐 = 𝟎 ; 𝒈𝟐 = 𝟎; 𝑯𝟐 = 𝟎   𝒐𝒏 𝒛 = 𝟏  

𝒇𝟑,𝒛𝒛 −  𝒉𝟐 + 𝟐𝒊𝒘 𝒇𝟑 = 𝟎                                                                            (27) 

𝒈𝟑,𝒛𝒛 −  𝟐𝒊𝑷𝒘 𝒈𝟑 = −𝑬𝒄   𝒇 𝟏𝒇 𝟏 − 𝑫−𝟏 𝒇𝟏𝒇 𝟏                                       (28)             

𝑯𝟑,𝒛𝒛 −  𝟐𝒊𝑷𝒘 𝑯𝟑 = 𝑺𝒄 𝑮𝟏𝒄𝟏𝑹𝒆 𝒇𝟑 + 𝑮𝟐𝒄𝟐𝑰𝒎 𝒇𝟑                                 (29) 
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The corresponding boundary conditions are 

𝒇𝟑 = 𝟎 ; 𝒈𝟑 = 𝟎; 𝑯𝟑 = 𝟎   𝒐𝒏 𝒛 = 𝟎  

𝒇𝟑 = 𝟎 ; 𝒈𝟑 = 𝟎; 𝑯𝟑 = 𝟎   𝒐𝒏 𝒛 = 𝟏                                                           (30) 

And 

𝒇𝟒,𝒛𝒛 −  𝒉𝟐 − 𝟐𝒊𝒘 𝒇𝟒 = 𝟎                                                                            (31) 

𝒈𝟒,𝒛𝒛 +  𝟐𝒊𝑷𝒘 𝒈𝟒 = −𝑬𝒄   𝒇 𝟐𝒇 𝟐 − 𝑫−𝟏 𝒇𝟐𝒇 𝟐                                       (32) 

𝑯𝟒,𝒛𝒛 +  𝟐𝒊𝑺𝒄𝒘 𝑯𝟒 = 𝑺𝒄𝑮𝟏𝒄𝟏𝑹𝒆 𝒇𝟒 + 𝑮𝟐𝒄𝟐𝑰𝒎(𝒇𝟒))                                (33)  

The corresponding boundary conditions are 

𝒇𝟒 = 𝟎 ; 𝒈𝟒 = 𝟎; 𝑯𝟒 = 𝟎   𝒐𝒏 𝒛 = 𝟎  

𝒇𝟒 = 𝟎 ; 𝒈𝟒 = 𝟎; 𝑯𝟒 = 𝟎   𝒐𝒏 𝒛 = 𝟏                                                            (34)  

Solving the equations (15)-(17), (19)-(21),  (23)-(25), and(26)-(28)  with respect to the 

boundary conditions (18),(22),(26) and (29), the solutions are 

𝒇 =  𝑨𝟏 + 𝒊𝑨𝟐  𝒛
𝟐 − 𝒛  

𝒇𝟏 = 𝒂 𝟏 − 𝒛 + 𝑩𝟏 𝒛
𝟐 − 𝒛 + 𝒊𝑩𝟐 𝒛

𝟐 − 𝒛  

𝒇𝟐 = 𝒃 𝟏 − 𝒛 + 𝑫𝟏 𝒛
𝟐 − 𝒛 + 𝑫𝟐𝒊 𝒛

𝟐 − 𝒛  

𝒇𝟑 = 𝟎 

𝒇𝟒 = 𝟎 

𝒈 = 𝒄𝟓 𝒛
𝟐 − 𝒛 + 𝒛 

𝒈𝟏 =  𝑬𝟏 + 𝒊𝑬𝟐  𝒛
𝟐 − 𝒛  

𝒈𝟐 = 𝒄𝟕 𝒛
𝟐 − 𝒛  

𝒈𝟑 = 𝒄𝟖 𝒛
𝟐 − 𝒛  

𝒈𝟒 = 𝒄𝟗 𝒛
𝟐 − 𝒛  

𝑯 = 𝒄𝟏𝟎 𝒛
𝟐 − 𝒛 + 𝒛 

𝑯𝟏 = (𝑳𝟏 + 𝒊𝑳𝟐) 𝒛𝟐 − 𝒛  

𝑯𝟐 = (𝑴𝟏 + 𝒊𝑴𝟐) 𝒛𝟐 − 𝒛  

𝑯𝟑 = 𝟎 
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𝑯𝟒 = 𝟎 

3. Shear Stress, Nusselt Number and Sherwood Number 

The non-dimensional shear stress  τx and τy at the lower and upper plates are given by 

(𝝉𝒙 + 𝝉𝒚)z=0 =(
𝝏𝒒

𝝏𝒛
)z=0 

(𝝉𝒙 + 𝝉𝒚)z=0 =(
𝝏𝒒

𝝏𝒛
)z=1 

The rate of heat transfer coefficient (nusselt number ) on the plates is given by 

(Nu)z=0 =(
𝝏𝜽

𝝏𝒛
)z=0 =(

𝝏𝒈

𝝏𝒛
)z=0 +(

𝝏𝒈𝟏

𝝏𝒛
)z=0 e

iwt
 +(

𝝏𝒈𝟐

𝝏𝒛
)z=0 e

-iwt
 +(

𝝏𝒈𝟑

𝝏𝒛
)z=0 e

2iwt
 +(

𝝏𝒈𝟒

𝝏𝒛
)z=0 e

-iwt
 

 (Nu)z=1 =(
𝝏𝜽

𝝏𝒛
)z=1 =(

𝝏𝒈

𝝏𝒛
)z=1 +(

𝝏𝒈𝟏

𝝏𝒛
)z=1 e

iwt
 +(

𝝏𝒈𝟐

𝝏𝒛
)z=1 e

-iwt
 +(

𝝏𝒈𝟑

𝝏𝒛
)z=1 e

2iwt
 +(

𝝏𝒈𝟒

𝝏𝒛
)z=1e

-iwt
 

The rate of mass transfer (sherwood number)on the plates are given by 

(sh)z=0 =(
𝝏𝑪

𝝏𝒛
)z=0 =(

𝝏𝑯

𝝏𝒛
)z=0 +(

𝝏𝑯𝟏

𝝏𝒛
)z=0 e

iwt
 +(

𝝏𝑯𝟐

𝝏𝒛
)z=0 e

-iwt
 +(

𝝏𝑯𝟑

𝝏𝒛
)z=10 e

2iwt
 +(

𝝏𝑯𝟒

𝝏𝒛
)z=0     e

-iwt
 

 (Sh)z=1 =(
𝝏𝑪

𝝏𝒛
)z=1 =(

𝝏𝑯

𝝏𝒛
)z=1 +(

𝝏𝑯𝟏

𝝏𝒛
)z=1 e

iwt
 +(

𝝏𝑯𝟐

𝝏𝒛
)z=1 e

-iwt
 +(

𝝏𝑯𝟑

𝝏𝒛
)z=1 e

2iwt
 +(

𝝏𝑯𝟒

𝝏𝒛
)z=1   e

-iwt
 

4. Discussion on Numerical Results 

The oscillatory solution for the velocity, temperature and concentration have been computed 

numerically for the governing parameters D
-1

,N , w and their profiles are drawn in figs1-

13.for computational purpose we have assumed G to be real so that the applied pressure 

gradient in the y-direction is zero. Also the Prandtl number P is taken to be 0.71.Since 

thermal buoyancy balances the vertical pressure gradient in the absences of any other applied 

forces in the direction of rotation, the flow takes place in planes parallel to the boundary 

plates. The flow is three dimensional and all the perturbed variables have been obtained using 

boundary layer equations which would reduce to three coupled partial differential equations 

for a complex velocity ,temperature and concentration. 

Figs 1-7 corresponds to  profiles of the axial velocity when one of the plates (lower) oscillates 

with given amplitude and the other at rest.The imposed pressure gradient along x-direction is 

choosen to be negative. The actual flow along x-axis remains negative for values of G.we 

find that in all cases ,U rises from its prescribed value on the lower plate to the maximum 

attained in the lower half and gradually reduces to rest on the upper plate.The magnitude of U 

experiences a depreciation in N and w (figs.1-2).when the concentration buoyancy dominates 

over the thermal force U experiences an enhancement or a reduction according as the two 

forces either act in the same or in opposite directions(fig-2).In contrast to U,the transeverse 

velocity V is positive for different  N&w.we find that V dicreases with w.The resultent 

velocity profiles like its components are bell shaped curves with their maximum attained at 
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y=-150 in the lower region.The magnitude of the resultant velocity dicreases with w (fig6 

).Also we observe that the resultant velocity increases with N(>0). 

The temperature profiles are plotted in figs.(7-9).We find that the temperature gradually 

dicreases from its value on the lower plate to attain its minimum and then again increases to 

attain its prescribed value 1 at the upper plate.An increase in the permeability of porous 

medium the temperature in the lower half increases and dicreases in the vicinity of the upper 

plate(fig.7 ) Ѳ enhances with increase in the frequency w(fig .9).when the concentration 

buoyancy force dominates over the thermal force the temperature enhances with  N 

irrespective of the directions of the buoyancy forces(fig.8).  

The concentration distribution(C) for different variations is exhibited in figs.(10-12) 

The configuration choosen is such that the molecular diffusibility does not directly affect the 

flow field and hence the role of schmidt number Sc appears only in the variation of the 

concentration.We notice that the concentration increases with increase in D
-1

 or w 

(fig.10)when the concentration buoyancy force dominates over the thermal buoyancy force 

the concentration enhances or reduces according as the two buoyancy forces are in the same 

or opposite directions(fig 10).An 

Increase in the molecular diffusivity increases the concentration for Sc~0.6 while for higher   

Sc~1.3 C  reduces in the fluid region(fig 12). 

The shear stress(τ),the Nusselt number(Nu) and the sherwood number on the plates are 

evaluated for different variations in the governing parameters are presented in tables (1-8).It 

is observed from tables 1 that the stress component  τx increases  with a dicrease in N and 

dicreases with a dicrease in w at z=0.At the upper plate the shear stress dicreases with a 

dicrease in N and w.As the permeability of the porous medium dicreases the stress (τx) 

increases at the lower plate  and dicreases at the upper plate.(when the concentration 

buoyancy force dominates over thermal buoyancy the shear stress at both the plates enhances 

when the two forces are in the same direction and it dicreases when they are in the opposite 

direction.shear stress τx at both the plates dicrease with N is dicreasing and increase when w 

dicreases.)from table 2  we find that the shear stress dicreases when N and w both are 

dicreasing.from table 3 we find that the shearstress τy  increases with dicrease in N and 

dicreases with dicrease in w.An increase in permeability of the porous medium   τy   increases 

at both the plates when the concentration buoyancy force dominates over the thermal 

buoyancy  τy  increases when they are in the same direction and it dicreases in opposite 

directions.At the upper plate  τy   increases with N irrespective of the directions of the 

buoyancy forces. 

The rate of heat transfer (Nusselt number)at both plates are presented in tables 5&6.The rate 

of heat transfer (Nu)at both the plates increases with increase in thermal buoyancy(G).A 

dicrease in the permeability of the medium enhances Nu at the lower plate and  𝑁𝑢  at the 

upper plate.when the concentration buoyancy dominates  over the thermal buoyancy force the 

rate of heat transfer at the lower plate experiences  an enhancement when the forces are in the 
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same direction and reduces when they act in opposite directions.We find a reversed effect at 

the upper plate.At the lower plate Nu dicreases with N. 

The rate of mass flux (sherwood number)at the plates are exibited in  tables 7&8 for different 

variations in the governing parameters.we find that the rate of mass flux at lower plate 

dicrease with N and w  and inicrease at the upper plate.when the concentration buoyancy 

force dominates over thermal force the sherwood number enhances or reduces at both the 

platesaccording as the two forces are either in the same or opposite directions.at the lower 

plate (sh) dicreases with a dicrease in N and increases with a dicrease in w and (sh) increases 

with a dicrease in N and w. 
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Fig.1. U with N 
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Fig.2. U with w 

G = 10
3 
, Sc =1.3, N=1  

W              I                  II             III 

                  2                 5             10 

 

 

 

-200000

-180000

-160000

-140000

-120000

-100000

-80000

-60000

-40000

-20000

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U

Z

III

II

I



International eJournal of Mathematics and Engineering 8 (2014) Vol. 6, Issue 4, pp 66 – 86 
Ahmed Waheedullah and Syed Azharuddin 

 

77 
 

 

 

Fig.3. V with N 
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Fig.4  V with w 
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Fig.5 Rv  with  N 
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Fig.6 Rv  with w 
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Fig.7    𝜽 𝒘𝒊𝒕𝒉 𝑫−𝟏 
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3 
, N=1,Sc =1.3, w = 2 
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Fig.8    𝜽 𝒘𝒊𝒕𝒉 𝑵 
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Fig.9    𝜽 𝒘𝒊𝒕𝒉 𝒘 
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Fig.10    𝑪 𝒘𝒊𝒕𝒉 𝑵 
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Fig.11    𝑪 𝒘𝒊𝒕𝒉 𝒘   
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Fig.12    𝑪 𝒘𝒊𝒕𝒉 𝑺𝒄   
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