Fuzzy Translations of Fuzzy p-Ideals in BCI-Algebras

Hossein Naraghi

Dept. of Mathematics, Payame Noor University, P.O.Box: 19395-3697, Tehran, Iran.
Email: ho.naraghi@pnu.ac.ir

ABSTRACT

In this paper, the concepts of fuzzy translation to fuzzy p-ideals in BCK/BCI algebras are introduced. The notion of fuzzy extensions and fuzzy multiplications of fuzzy p-ideals with several related properties are investigated. Also, the relationships between fuzzy translations, fuzzy extensions and fuzzy multiplications of fuzzy ideals are investigated.

AMS Mathematics Subject Classifications: 06F35, 03G25, 08A72.

Keywords: Fuzzy ideal, fuzzy p-ideal, fuzzy translation, fuzzy extension, fuzzy multiplication.

1. Introduction

BCK/BCI-algebras are two important classes of logical algebras introduced by Iski in 1966 (see [9, 10, 20]). Since then, several works have been dedicated to the theory of BCI/BCK/MV/BL-algebras with a focus on ideals and filters of these classes of algebras. From the logical point of view, various ideals correspond to various sets of provable formulas [2, 11, 12]. In 1965, Zadeh [18] introduced the concept of fuzzy sets which has been successfully applied to many mathematical disciplines. In 1991, O. Xi [17] applied the concept of fuzzy sets to BCI-algebras and introduced the notion of fuzzy ideals in BCI-algebras. In 1994, Jun et al. [15] introduced fuzzy p-ideals in BCI-algebras and in 2010, Kordi et al. [16], extend it to notation of $(m,n) -$fold p-ideals, see also [17]. Lee et al. [18] and Jun [14] discussed fuzzy translations, fuzzy extensions and fuzzy multiplications of fuzzy
sub algebras and ideals in BCK/BCI algebras. They investigated relations among fuzzy translations, fuzzy extensions and fuzzy multiplications. In this paper, fuzzy translations, fuzzy extensions and fuzzy multiplications of fuzzy \(p \)-ideals in BAK/BCI-algebras are discussed. Relations among fuzzy translations, fuzzy extensions and fuzzy multiplications of fuzzy \(p \)-ideals in BAK/BCI-algebras are also investigated.

2. Preliminaries

By a BCI-algebra we mean an algebra \((X; *, 0)\) of type \((2, 0)\) satisfying following axioms:

\[
\begin{align*}
(1) & \quad ((x * y) * (x * z)) * (z * y) = 0, \\
(2) & \quad (x * (x * y)) * y) = 0, \\
(3) & \quad x * x = 0, \\
(4) & \quad x * y = 0 and y * x = 0 imply x = y.
\end{align*}
\]

for all \(x, y, z \in X \). We can define a partial ordering "\(\leq \)" on \(X \) by \(x \leq y \) if and only if \(x * y = 0 \).

The following statements are true in any BCI-algebra \(X \):

\[
\begin{align*}
(1.1) & \quad (x * y) * z = (x * z) * y, \\
(1.2) & \quad x * 0 = x, \\
(1.3) & \quad (x * z) * (y * z) \leq x * y, \\
(1.4) & \quad x \leq y implies x * z \leq y * z and z * y \leq z * x, \\
(1.5) & \quad 0 * (x * y) = (0 * x) * (0 * y), \\
(1.6) & \quad x * (x * (x * y)) = x * y.
\end{align*}
\]

Definition 2.1. A nonempty subset \(I \) of \(X \) is called an ideal of \(X \) if it satisfies:

\[
\begin{align*}
(I_1) & \quad 0 \in I, \\
(I_2) & \quad x * y \in I and y \in I imply x \in I.
\end{align*}
\]

Definition 2.2. A nonempty subset \(I \) of \(X \) is called an ideal of \(X \) if it satisfies condition \((I_1)\) and

\[
\begin{align*}
(I_3) & \quad (x * z) * (y * z) \in I and y \in I imply x \in I.
\end{align*}
\]

Putting \(z = 0 \) in \((I_3)\), we can see that every \(p \)-ideal is an ideal.

Definition 2.3. A fuzzy set \(\mu \) of BCI-algebra \(X \) is called fuzzy ideal of \(X \) if it satisfies
(FI₁) \(\mu(0) \geq \mu(x) \)

(FL₁) \(\mu(x) \geq \min\{\mu(x \ast y), \mu(y)\} \).

Definition 2.4. A fuzzy set \(\mu \) of BCI-algebra \(X \) is called fuzzy \(p \)-ideal of \(X \) if it satisfies (FI₁) and

\[
(FI₃) \mu(x) \geq \min\{((x \ast z) \ast (y \ast z)), \mu(y)\}
\]

Proposition 2.5. ([17]) Let \(\mu \) be a fuzzy set in a BCI-algebra \(X \). Then \(\mu \) is a fuzzy \(p \)-ideal of \(X \) if and only if for all \(t \in [0,1] \),

\[
\mu_t \neq \emptyset \Rightarrow \mu_t \text{ is a } p \text{-ideal of } X,
\]

Where \(\mu_t = \{x \in X|\mu(x)t\} \).

3. **Main Results**

Throughout this paper, we take \(\dagger = 1 - \sup\{\mu(x) | x \in X\} \) for any fuzzy set \(\mu \) of \(X \).

Definition 3.1. ([18]) Let \(\mu \) be a fuzzy subset of \(X \) and let \(\alpha \in [0, \dagger] \). A mapping \(\mu_\alpha \dagger \rightarrow [0,1] \) is called a fuzzy \(\alpha \)-translation of \(\mu \) if it satisfies \(\mu_\alpha(x) = \mu(x) + \alpha \) for all \(x \in X \).

Theorem 3.2. if \(\mu \) is a fuzzy \(p \)-ideal of \(X \), then the fuzzy \(\alpha \)-translation \(\mu_\alpha \dagger \) of \(\mu \) is a fuzzy \(p \)-ideal of \(X \), for all \(\alpha \in [0, \dagger] \).

Proof. Assume that \(\mu \) is a fuzzy \(p \)-ideal \(X \) and let \(\alpha \in [0, \dagger] \). Then we have

\[
\mu_\alpha = \mu(0) + \alpha \geq \mu(x) + \alpha = \mu_\alpha(x),
\]

and for all \(x, y, z \in X \) we have

\[
\mu_\alpha(x) = \mu(x) + \alpha \\ \geq \min\{\mu((x \ast z) \ast (y \ast z)), \mu(y)\} + \alpha \\ = \min\{\mu((x \ast z) \ast (y \ast z)) + \alpha, \mu(y)\} + \alpha \\ \min\{\mu_\alpha((x \ast z) \ast (y \ast z)), \mu_\alpha(y)\}.
\]

Hence, the fuzzy \(\alpha \)-translation \(\mu_\alpha \dagger \) of \(\mu \) is a fuzzy \(p \)-ideal of \(X \).

Theorem 3.3. let \(\mu \) be a fuzzy subset of \(X \) such that the fuzzy \(\alpha \)-translation \(\mu_\alpha \dagger \) of \(\mu \) is a fuzzy \(p \)-ideal of \(X \), for some \(\alpha \in [0, \dagger] \). Then, \(\mu \) is a fuzzy of \(X \).
Proof. Assume that μ^α_α is a fuzzy p-ideal of X, for some $\alpha \in [0, \dag]$. Let $x \in X$, then

$$\mu(0) + \alpha = \mu^\alpha_\alpha(0) \geq \mu^\alpha_\alpha(x) = \mu(x) + \alpha,$$

So $\mu(0) \geq \mu(x)$. Also, for all $x, y, z \in X$ we have

$$\mu(x) + \alpha = \mu^\alpha_\alpha(x) \geq \min\{\mu^\alpha_\alpha((x * z) * (y * z)), \mu^\alpha_\alpha(y)\} = \min\{\mu((x * z) * (y * z)) + \alpha, \mu(y)\} + \alpha = \min\{\mu((x * z) * (y * z)), \mu(y)\} + \alpha.$$

So, $\mu(x) \geq \min\{\mu((x * z) * (y * z)), \mu(y)\}$. Therefore μ is a fuzzy p-ideal of X.

Theorem 3.4. If the fuzzy α-translation μ^α_α of μ is a fuzzy p-ideal of X, for some $\alpha \in [0, \dag]$. Then, μ is a fuzzy of X.

Proof. Let the fuzzy α-translation μ^α_α of μ is a fuzzy p-ideal of X. Then, we have $\mu^\alpha_\alpha(x) \geq \min\{\mu^\alpha_\alpha((x * z) * (y * z)), \mu^\alpha_\alpha(y)\}$. Since by ([15]), μ is a subalgebra, we have

$$\mu^\alpha_\alpha(x) = \mu(x) + \alpha \geq \min\{\mu(x), \mu(y)\} + \alpha = \min\{\mu(x) + \alpha, \mu(y) + \alpha\} = \min\{\mu^\alpha_\alpha(x), \mu^\alpha_\alpha(y)\}.$$

Therefore, μ^α_α is a fuzzy sub algebra of X.

Theorem 3.5 let μ be a fuzzy subset of X such that the fuzzy α-translation μ^α_α of μ is a fuzzy p-ideal of X, for some $\alpha \in [0, \dag]$. Then, μ is a fuzzy of X.

Proof. Clearly, $0 \in I_\mu$. Assume that $x, y, z \in X$ such that $(x * z) * (y * z), y \in I_\mu$, then

$$\mu^\alpha_\alpha((x * z) * (y * z)) = \mu^\alpha_\alpha(x) = \mu^\alpha_\alpha(y)$$

Thus, we have

$$\mu^\alpha_\alpha(x) \geq \min\{\mu^\alpha_\alpha((x * z) * (y * z)), \mu^\alpha_\alpha(y)\} = \mu^\alpha_\alpha(0)$$
Since, μ_α^+ of μ is a fuzzy p-ideal of X, we conclude that $\mu_\alpha^+(x) = \mu_\alpha^+(0)$. Therefore $\mu(x) + \alpha = \mu(0) + \alpha$, i.e., $\mu(x) = \mu(0)$, so that $x \in I_\mu$. Therefore, I_μ is an p-ideal of X.

Proposition 3.6. ([25]), If the fuzzy α-translation μ_α^+ of μ is an p-ideal of X, then it is order reversing.

Theorem 3.7. let μ be a fuzzy subset of X such that the fuzzy α-translation μ_α^+ of μ is a fuzzy ideal of X, then the following statements are equivalent:

(i) μ_α^+ is a fuzzy p-ideal of X,

(ii) $\mu_\alpha^+ (0 * (0 * x)) \leq \mu_\alpha^+ (x)$

Proof. (i) \Rightarrow (ii): It is enough to put $x=z=0$ and $y=x$ in definition of fuzzy p-ideal.

(ii) \Rightarrow (i): for all $x, y, z \in X$ we have

$$(0 * (0 * x) * y) * ((x * z) * (y * z)) = (0 * (x * z) * (y * z)) * (0 * x) * y =$$

$$\left(\left(0 * (0 * z) * (0 * y) * (0 * z)\right) * (0 * x)\right) * y$$

$$\leq \left((0 * x) * (0 * y) * (0 * x)\right) * y$$

$$= (0 * (0 * y)) * y = 0$$

Now, by Corollary 3.6 of ([25]), we have:

$$\mu_\alpha^+(0 * (0 * x)) \geq \min \{\mu_\alpha^+(x * z) * (y * z) ; \mu_\alpha^+(y)\},$$

So $\mu_\alpha^+(x) \geq \min \{\mu_\alpha^+(x * z) * (y * z) ; \mu_\alpha^+(y)\}$. Hence μ_α^+ is a fuzzy p-ideal of X.

Definition 3.8. ([18]) Let μ_1 and μ_2 be fuzzy subsets of X. If $\mu_1 \leq \mu_2$, for all $x \in X$, then we say that μ_2 is a fuzzy extension of μ_1.

Definition 3.9. Let μ_1 and μ_2 be fuzzy subsets of X. Then μ_2 is called a fuzzy p-ideal extension of μ_1 if following statements are valid:

(i) μ_2 is a fuzzy extension of X, then μ_1,

(ii) If μ_1 is a fuzzy p-ideal of X, then μ_2 us a fuzzy p-ideal of X.

Theorem 3.10. let μ be a fuzzy p-ideal of X subset of X and $\alpha \in [0, \dagger]$. then the fuzzy α-translation μ_α^+ of μ is a fuzzy p-ideal extension of μ.

Proof. It's clear from the definition of fuzzy α-translation.

The following example show that a fuzzy p-ideal extension of a fuzzy p-ideal μ may not be represented as a fuzzy α-translation of μ:

Example 3.11. Consider a BIC-algebra $X = \{0, a, b, c\}$ with the following Cayley table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>A</td>
<td>a</td>
<td>0</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>B</td>
<td>b</td>
<td>c</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>C</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>0</td>
</tr>
</tbody>
</table>

Let μ be a fuzzy subset of X defined by:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>0.6</td>
<td>0.6</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Then, μ is a fuzzy p-ideal of X. Let θ be a fuzzy subset of X given by:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>0.63</td>
<td>0.63</td>
<td>0.41</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Then, θ is a fuzzy p-ideal extension of μ. But it is not the fuzzy α-translation μ_α^+ of μ, for all $\alpha \in [0, \dagger]$.

Theorem 3.12. Let μ be a fuzzy subset of X and $\alpha \in [0, \dagger]$. Then, the fuzzy α-translation μ_α^+ of μ is a fuzzy p-ideal of X if and only if $U_\alpha(\mu; t)$ is a p-ideal of X, for all $t \in \text{Im}(\mu)$ with $t > \alpha$.

Proof. Suppose that μ_α^+ is a fuzzy p-ideal of X and $t \in \text{Im}(\mu)$ with $t > \alpha$. Since $\mu_\alpha^+(0) \geq \mu_\alpha^+(x)$, for all $x \in X$, we have $\mu(0) + \alpha = \mu_\alpha^+(0) \geq \mu_\alpha^+(x) = \mu(x) + \alpha \geq t$, for $x \in U_\alpha(\mu; t)$, so $0 \in U_\alpha(\mu; t)$. Let, $x, y, z \in X$ such that $(x * z) * (y * z), y \in U_\alpha(\mu; t)$, then

$$\mu((x * z) * (y * z)) \succeq t - \alpha, \quad \mu(y) \succeq t - \alpha$$

i.e.,
Hossein Naraghi

\[\mu^+(x * z * (y * z)) \geq t, \quad \mu^+(y) \geq t \]

Since \(\mu^+ \) is a fuzzy \(p \)-ideal. So, we have

\[\mu(x) + \alpha = \mu^+(x) \geq \min\{\mu^+(x * z * (y * z)), \mu^+(y)\} \geq t, \]

that is \(\mu(x) \geq t - \alpha \) so that \(x \in U_{\alpha}(\mu; t) \). Therefore, \(U_{\alpha}(\mu; t) \) is a \(p \)-ideal of \(X \).

Conversely, suppose that for all \(t \in \text{Im} (\mu) \) with \(t > \alpha \), \(U_{\alpha}(\mu; t) \) is a \(p \)-ideal of \(X \). If there exists \(x \in X \) such that \(\mu^+(0) < \beta \leq \mu^+(\alpha) \), then \(\mu(\alpha) \geq \beta - \alpha \) but \(\mu(0) \geq \beta - \alpha \).

Therefore \(\alpha \in U_{\alpha}(\mu; t) \) and \(0 \notin U_{\alpha}(\mu; t) \). Hence it's contradiction and so for all \(x \in X, \mu^+(0) \geq \mu^+(x) \). Now assume that there exist \(a, b, c \in X \) such that,

\[\mu^+(\alpha) < \gamma \leq \min\{\mu^+(a * c * (b * c)), \mu^+(b)\}. \]

Then \(\mu(a * c * (b * c)) \geq \gamma - \alpha \) and \(\mu(b) \geq \gamma - \alpha \). Therefore \((a * c) * (b * c), b \in U_{\alpha}(\mu; t) \) but \(b \notin U_{\alpha}(\mu; t) \), which is a contradiction. Hence, \(\mu^+ \) is a fuzzy \(p \)-ideal of \(X \).

Theorem 3.13. Let \(\mu \) be a fuzzy \(p \)-ideal of \(X \) and let \(\alpha, \beta \in [0, \dagger] \). If \(\alpha \geq \beta \) Then, the fuzzy \(\alpha \)-translation \(\mu^+_\alpha \) of \(\mu \) is a fuzzy \(p \)-ideal extension of the fuzzy \(\beta \)-translation \(\mu^+_\beta \) of \(\mu \).

Proof. It's straightforward.

Theorem 3.14. Let \(\mu \) be a fuzzy \(p \)-ideal of \(X \) and \(\beta \in [0, \dagger] \). For every fuzzy \(p \)-ideal extension \(\nu \) of the fuzzy \(\beta \)-translation \(\mu^+_\beta \) of \(\mu \), there exists \(\alpha \in [0, \dagger] \). Such that \(\alpha \geq \beta \) and \(\nu \) is a fuzzy \(p \)-ideal extension of the fuzzy \(\alpha \)-translation \(\mu^+_\alpha \) of \(\mu \).

Proof. For every fuzzy \(p \)-ideal \(\mu \) of \(X \) and \(\beta \in [0, \dagger] \), the fuzzy \(\beta \)-translation \(\mu^+_\beta \) of \(\mu \) is a fuzzy \(p \)-ideal extension of \(\mu^+_\beta \) then there exists \(\alpha \in [0, \dagger] \) such that \(\alpha \geq \beta \) and for all \(x \in X, \nu(x) \geq \mu^+_\alpha \).

Definition 3.15. Let \(\mu \) be a fuzzy subset of \(X \) and \(\gamma \in [0,1] \). A fuzzy \(\gamma \)-multiplication of \(\mu \) denoted by \(\mu^m_\gamma \), is defined to be a mapping \(\mu^m_\gamma: X \rightarrow [0,1] \) by \(\mu^m_\gamma(x) = \mu(x), \gamma \).

Theorem 3.16. If \(\mu \) is a fuzzy \(p \)-ideal of \(X \), then the \(\gamma \)-multiplication of \(\mu \) is a fuzzy \(p \)-ideal of \(X \) for all \(\gamma \in [0,1] \).

Proof. It's clear.
Theorem 3.17. Let μ be a fuzzy subset of X. Then μ is a fuzzy p-ideal of X if and only if the fuzzy γ-multiplication μ^{m}_{γ} of μ is a fuzzy p-ideal of X, for all $\gamma \in [0,1]$.

Proof. (\Rightarrow) By Theorem 3.15, is clear.

(\Leftarrow) Assume that μ^{m}_{γ} of μ is a fuzzy p-ideal of X, for all $\gamma \in [0,1]$. Thus,

$$\mu(0), \gamma = \mu^{m}_{\gamma}(0) \geq \mu^{m}_{\gamma}(x) = \mu(x), \gamma$$

i.e., for all $x \in X, \mu(0) \geq \mu(x)$ Also, for $x, \gamma, z \in X$, we have

$$\mu(x), \gamma = \mu^{m}_{\gamma}(x) \geq \min\{\mu^{m}_{\gamma}(x \ast z) \ast (\gamma \ast z), \mu^{m}_{\gamma}(\gamma)\}$$

$$= \min\{\mu((x \ast z) \ast (\gamma \ast z)), \mu(\gamma), \gamma\}$$

$$= \min\{\mu((x \ast z) \ast (\gamma \ast z)), \mu(\gamma)\}, \gamma$$

Which implies that $\mu(x) \geq \min\{\mu((x \ast z) \ast (\gamma \ast z)), \mu(\gamma)\}$. Therefore μ is a fuzzy p-ideal of X.

Theorem 3.18. Let μ be a fuzzy subset of X. $\alpha \in [0,\dagger]$ and $\gamma \in [0,1]$. Then, every fuzzy α-translation μ^{\dagger}_{α} of μ is a fuzzy p-ideal extension of the fuzzy γ-multiplication μ^{m}_{γ} of μ.

Proof. For all $x \in X$, we have

$$\mu^{\dagger}_{\alpha}(x) = \mu(x) + \alpha \geq \mu(x) > \mu(x), \gamma = \mu^{m}_{\gamma}(x)$$

and so μ^{\dagger}_{α} is s fuzzy extension of μ^{m}_{γ}. Assume that μ^{m}_{γ} is a fuzzy p-ideal of X. Then by Theorem 3.16, μ is a fuzzy p-ideal of X. It follows from Theorem 3.2 that the fuzzy α-translation μ^{\dagger}_{α} of μ is a fuzzy p-ideal of X, for all $\alpha \in [0,\dagger]$.

Therefore, every fuzzy α-translation μ^{\dagger}_{α} of μ is a fuzzy p-ideal extension of the fuzzy γ-multiplication μ^{m}_{γ} of μ.

REFERENCES

