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Abstract:

When two bodies which have different velocities come into contact an impact occurs.
Within an impact analysis one is interested in the displaceraent of the bodies after impact and in
the impact force as a function of time‘t ‘in one;dimension. The wave propagation due to
material nonlinearity and hysteresis is studied anw. impact. The objective of this paper is to
present a numerical study of propagating pulsed anuharmonic waves in nonlinear media using a
Finite difference scheme. This study focuses on longitudinal, one-dimensional wave

propagation.

A bar 1 of length L; impacts another bar 2 of length © L, . Both bars have the same
material properties. The left bar has-21 initial velocity of Vj, whereas the right bar is at rest.

The solution of this problem can be derived from the one-dimensional wave equation
EA 6%u/0x> =pA &*u/ot* (1)
V1=V, V,=0

Fig-1 (LONGITUDINAL IMPACT OF TWO BARS)
Here c (u)>0, Rn\<0 And Ryc(u) =0 (2)

Here Ry, c (1), are perpendicular to one another.
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Furthermore one has to fulfill the initial and boundary conditions of the problem stated in
the above figure and the standard contact conditions (2) which describe that no Penetration can
occur at the contact point and also that the contact force has to be a compression force.

The solution of (1) is

/ E
u(t)= f(x-ct) + g(x+ct) with c¢= ; (3)

Where ¢ denotes the speed of wave travelling in the bars. Function.f corresponds to a wave
travelling in the X-direction of the bar, while g is associated with a wave travelling in the
opposite direction.

328—u=f’(x-ct)+g’ (x- ct) (4)
ox
V=2 e (recty g 0] 5)

The Normal stress O in the bar is given by
O=E¢ =E/cou/ot =c p ou/ot (6)

(6) Shows that there is a linear relationship between the stress at any point in the bar and the
particle velocity.

When a wave travels with speed ‘c ‘along the bar, there is also a stress pulse which travels
with the same velocity.

When such pulse reaches the free end of the bar, one can compute the behavior of the pulse from
the condition that the end of the bar has to be stress free. This leads with (5) to the condition.

o =Edu/ot =E [(x-ct) + g’(x-ct) | =0" V't (7)
From which a relation between {” and g’ follows for the free ends
x=0 and x=1; +1,

f*(x-ct) =-g’(x+ct) (8)

Thus a reflection occurs at the free ends with equal Amplitude in the stress pulse but with
opposite velocity. Furthermore the initial conditions can be stated for the impact of two bars can
be defined as below.

v=[ou/ot]t=0 =g for 0 <x <l
v=[ou/ot ]t=0 =0 for ,<x<I,



106

N.Srinivasacharyulu, K. Sharath babu | International eJournal of Mathematics and Engineering 9 (2010) 104-114

ou
o= E[a_x laco = PR+ (x) =0for0<x< 1+, 9)

From these conditions follow the initial values of f” and g’ as

Vo

.
Px)=——,g(x)= — for0<x<l,
C 2c

since f’(x) =0; g’ (x) =0 for 1, <x< 1)+,

The problem stated in  Fig. (1) Can be solved with the relations above. Since the bar 1 has an
initial velocity vy, one has a distribution of f* and g’ for t=0.

These are associated with two waves, one travelling in/the X- direction and the other in the
opposite direction. The two bodies remain in contact until
Timp.z 4 ],

C

Which corresponds to the time at which the reflected wave in bar 2 arrives at the contact point
since the first bar is stress free this wave encounters’a free end and hence does not enter bar 1,
but reflects due to the stress free boundary condition. ~ After that time the bars are no longer in
contact. The final velocity of bar 1 after impact is v;=0 and for bar 2 the velocity is then v,
=vo/2. Itis clear that there is still an oscillation due to the travelling stress wave in bar-2where as
bar 1 is at rest.

Which are different when compared to the wave solution above. This is due to the oscillations
remaining in bar 2 after impact, which is, as also the impact time, neglected in the case of rigid
body impact. So one has to study the Non-linear material behavior in order to get the wave
propagation nature in impact problem. At the same time the impact time is very short and the
stresses generated are high. Hence the Numerical methods to solve impact problems have to
consider Non-linear material behavior and have to be designed for short time responses. Due to
the possibility of high oscillatory responses near wave fronts we have to be careful when
developing algorithms of impact problems. Moreover we have to consider the wave front
characteristics within the Numerical scheme.

Here One —dimensional wave propagation in non-linear medium problem is considered. It is
interesting to find that the/well known non-linear elastic stress-strain relationship is a special
case of integral relationship. By using this relationship from McCall and Guyer model of
hysteretic materials can‘also be derived .Here we established a quadratic relation between stress
and strain. Kurganoy and Tadmor solved this nonlinear hyperbolic problem by high —resolution
schemes. Here we made an attempt to solve the problem by Finite difference schemes. In the
Finite difference scheme Iteration across the time level method is applied at selected time level.
This process reduces the nonlinear partial differential equation to a linear partial differential
equation. The reduced partial differential equation is solved by Finite difference method.
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The study of wave propagation in materials and their characterization is a challenging area.
Traditional ultrasonic techniques rely on wave propagation in linear elastic media. However,
techniques based on the propagation of nonlinear waves are often more effective for evaluating and
characterizing physical properties pertaining to reliability, durability and remaining life of materials
and structure components. In addition some materials are inherently nonlinear such as rocks.

There has been extensive work in the published literature on nonlinear wave propagation. Kolsky
(1963), Bland (1969), Debnath (1997), Drumheller (1998), Whitham' (1999), Hamilton and
Blackstock (1998) and Naugolnykh and Ostrovsky (1998) for an intreduction and review of suitable
techniques. The revise article by Norris (1998) provides a comprehensiye review of nonlinear wave
propagation in solids.

1. Nonlinear Governing laws:

For materials under plastic deformation, Materials with distributed damage, linear elastic Hooke’s
law is usually inadequate to describe their nonlinear, inelastic behavior. Various constitutive laws
have been proposed. Here we study the class of materials whose behavior can be described by the
following stress-strain relationship.

oo(e, g » df(z) , ...
) - go)- a0t~ £(e)] 6 - os [Lgt)- 16 de
(10)

Integration gives

o(&,8 ) =1(e) +lo(g,-flg,)]le S +_[ g(7)- df(z') ]dr (11)

Where ¢ is the initial strain, s =sign (& ), o is aconstant , and f(¢ ) and g(¢& ) are functions

to be determined for a given material. In the above governing equations (10), (11) a dot overhead
denotes derivative with respect to time. Macki et al. (1993) and Mayergoyz (1991) show that with
proper selection of o, f(¢) and g(¢) , the constitutive law described by (10) or (11) can be used to

describe a vast range of material behavior.

The traditional nonlinear. elastic stress-strain law which is related to (10) or (11) is obtained by
taking the assumption thatno initial stress and strain. So that

oo(e,e)
oe

df( 2')

=g(e)—as[f(0)] e““-asg gir) - Je" ™ dr (13)

By selecting @ =0 and

g(e)=El -y¢ -5 ") (14)
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One can reduce the stress-strain relationship of (13) to the well-known nonlinear elastic constitutive
law,

do(é,e) _ E(175—5gg— ..... ) (15)
oe

Where E is the second order Elastic (Young’s) modulus. Ey is callct the third order elastic

constant, Equation (15) was derived by Landau and Lifshitz (1959) by expanding the strain energy
density function for hyper-elastic materials.

Equations (15) do not show any hysteresis in the stress-strain relationship. The hysteretic behavior
is accounted for by using a nonzeroa . Means, call « the'hysteresis parameter. B y substituting

df(e) EAe
=gE)-E(I+aAg), f(O)Z'T (16)
In the equation (13) we get
M:g(g)—E(l+aA5)+Ee'“” (17)
o¢
For small values of &
e rltase (18)

Equation (17) together with (14) reduces to
oo(e,¢ )

o€
(19)

This is identical to the stress-strain relationship derived in McCall and Guyer (1994); Guyer and
McCall (1995) and Van:Den Abeele et al. (2000a, b).

=FE [ I- YE = 552 - (AE + Sé‘) ] (Special case of (11) or (12))

Now, we consider a one-dimensional problem of wave propagation through a nonlinear medium. For
small strain deformation, the equation of motion can be written as (Achenbach, 1999)

1 0o 820!
Fax = aﬁ (20)

Where u(x, t) is the displacement in the x-direction, p is the mass density, and o (x,t) is the

normal stress in the x-direction. For the small strain deformation considered here, the normal strain
in the x-direction is
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_ Ou
& = ax Q1)

Next assume that the nonlinear constitutive relationship of the medium be described by

o=0(&¢) 22)

Apply (22) andc= £ in (20) yields
\ »

1 o0°u _azu 3 [1_80 ] o’ u
C’ ot ox’ E O¢ Ox’
(23)

/E
Where E is the elastic Young’s modulus and c= ; can be considered as the phase velocity.

This nonlinear equation 1is solved by applying finite difference method. In the middle Iteration
across the time —step concept is introduced.

From equation (15) the case of a nonlinear material defined by the first two terms so that

ooe.e) _ E(1-y€) (24)

o¢

1
Sothat o =E (¢ ‘?782) (25)

Clearly, when y = 0 , the mafc.ial is linear elastic. The parameter y indicates the amount of
material nonlinearity. The perameter y defined here is identical to the acoustic nonlinear

faVal

parameter (Cantrell and Yost, .22J). The acoustic nonlinear parameter arises in metals due to lattice
anharmonicity which is;usiarnvery small in comparison to the elastic deformation of the metals.
So we can study stress-strancurves for various values of Y . For choice y =10000, y=5000 and
y =2500 respectively. " From (25) dictates that the material behaves differently in tension and
Compression, although the/difference is only to the second order. In the literature, such material
behavior is sometimes teferred to as pseudo elastic. To model materials with identical nonlinear
tensile and compressive behavior, only the quadratic terms in  (15) should be used

Apply (25) in (23)
2 2
0
2;202(1'7/£) g . 26)
X
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This is the same equation derived by Gol’dberg (1961) based on the first principles of classical
elasticity. Numerical methods can be applied to study the solution behavior ( 26 ) . All evaluations
are based on the conservation law.

2. Numerical solution of wave equation:

Apply Finite difference Scheme on equation ( 26) so that it becomes a _difference equation ,

—— value write as it is and it’s value is calculated at each iteration./ This process helps us to

X
solve the Numerical scheme with out Non-linear equations. This imethod is called iteration across

the time step.
2
Ou _ Wij Ui Ui

or kK

(27)

820! 3 ui+1,j_2ui,j+ui-1,j
2 2
ox h

k ox h’

2 _ k2 2 ou 7
Wi = & Wi T Wi = P ¢ (=75 ) Wi~ Uit Ui,j)
ui,j+l-2ui,j+ Uij = ﬂ (u i+1,j_2u15j+ Ui_l,j) (29)

2
k 2 ou
_ [ -

Where /8 h2 ¢ ¥ P )
Uijo = Wi 20580 u + AU, tua) (30)

Formula ( 30 ) shows that the function values at the j th and j-1th time levels are required in order
to determine those atthe (j+1)th time level. We have to select the mesh ratio

k :
o= 3 <1 In order to get the convergent solution.



111
N.Srinivasacharyulu, K. Sharath babu | International eJournal of Mathematics and Engineering 9 (2010) 104-114

The boundary conditions are u(0,t) =0 = u(0,jk ) =0 forj=1,2,3......
U(15,t)=-0.03 = u(15,k)=-0.03 forj=1,2,3..... For t>0

au

(5) = vp; 0= X <75 50 that

t=0
(2
8t = 0;75<x<15
t=0
— Ui — Wio + Vok 31)
=~ U1~ Uiy (32)

Initial displacement u (1;,0 ) = 0.5 sinx

= u(7.5,0)=0.5sin(1h) (33)

Apply the iteration across the time-step method with specific numerical code we can get the
following results. Also the wave propagation. - is also plotted with various time levels with vy =0.5

m/s
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3. Numerical results:

10 12 14

Figure 1Non -linear wave propagation

Level-1:

0.5 0.06092 5.5 -0.0771925 10.5 -0.088962
1 0.10718 6 -0.0229269 11 -0.102999
1.5 0.127687 6.5 0.03989 11.5 -0.0864315
2 0.117662 7 0.0961233 12 -0.0430716
2.5 0.079809 7.5 0.13225 12.5 0.0167098
3 0.02364 8 0.13967 13 0.0785209
35 -0.0368479 8.5 0.116811 13.5 0.127473
4 -0.0866003 9 0.0695148 14 0.151826
4.5 -0.113191 9.5 0.00960611 14.5 0.145862
5 -0.109866 10 -0.0480026 15 0.111286
Level-2:

0.5 0.135289 5.5-0.174153 10.5 .202572

1 0.237945 6 -0.0536828 11-0.234016
1.5 0.283322 6.5 .0858074 11.50.197392

2 0.260802 7 0.210655 12 -0.101177
2.50.176386 7.50.290782 12.50.0315613
3 0.051234 8 0.30706 13 0.168814
3.5.0835243 8.5 0.255994 13.5 0.277467
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4 -0.194405 9 0.150577 14 0.331407
4.5-0.253772 9.5.0171066 14.5 0.317918

5 -0.246599 10-0.111248 15 0.524829
Level-3:

0.5 0.284054 5.5 0.380609 10.50:45270411

1 0.499296 6 -0.127802 11:-0.520226

1.5 .593763 6.5 0.16511 11.5 -0.444217

2 0.545058 7 0.427146 12 -0.242556
2.5 0.365843 7.5 0.594885 12.5 0.0361203

3 0.100729 8 0.627992 13 0.324315
3.5-0.18464 8.5 0.519098 13.5 0.552204

4 -0.419661 9 0.295597 14 0.664725

4.5 0.546058 9.5 0.012944 14.5-0.0125258

5 -0.532151 10 -0.258922 15 2.6067
Level-4:

0.5 0.436569 5.5 -0.592584 10.5 -0.709718
1 0.76723 6 -0.204107 11 -0.814258
1.5 0.912005 6.5 0.246096 11.5 -0.697889
2 0.836427 7 0.648776 12 -0.388132
2.5 0.559981 7.5 0.906326 12.5 0.0401606
3 0.151328 8 0.956663 13 0.483102
3.5 -0.2885 8.5 0.788448 13.5 0.833227
4 -0.650837 9 0.44384 14 1.04108
4.5 -0.845991 9.5 0.00819363 14.5 -0.522624
5 -0.825204 10 -0.410852 15 4.97338
Level-5:

0.5 0.401638 5.5 0.528708 10.5.622793

1 0.706164 6 -0.171163 11 -0.717303

1.5 0.840245 6.5 0.24297 11.50.609284

2 0.77228 7 0.61354 12 -0.323911

2.5 0.520126 7.5 .851021 12.50.070126

3 0.146751 8 0.898517 13 0.477615

3.5 0.255209 8.5 0.745602 13.50.862448

4 -0.586116 9 0.430953 14 -1.71805
4.5-0.763729 9.5 0.032826 14.5 11.4623

5 -0.743334 10 -0.350077 15 -14.2961
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4. Result Analysis:

When ever impact occurs the velocities of the two objects are changes according to the starting
compression force applied at the impact point. When ever an impact ocecurs a longitudinal sound
wave is generated and it propagates in the region upto free end of .the second object. When it
reaches to the free end a reflection occurs. That is why the boundary, condition at the free end is
assumed as negative but small in magnitude.

The displacement in terms of the length of the impact system with respective to time is drawn in
Figure-1. It gives the following inferences.

Y

2)

3)

4)

The Longitudinal sound waves harmonic in the given slot of time interval, since the
amplitude of u(x, t) fluctuates about the mean position zero.

The progression of waves exhibits higher, harmonic generation, since the
u(x, t) repeats at the certain length of propagation.

The impact of collision of the material shows the vibrational state with in the system with
Non-linear behavior.

The smooth curve interprets the uniform' distribution of molecules of materials in other words
the defects and imperfections are might be absent (almost) in the system.
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