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Abstract: 

 When two bodies which have different velocities come into contact an impact occurs.  

Within an impact analysis one is interested in the displacement of the bodies after impact and in 

the impact force as a function of time‘t ‘in one-dimension.  The wave propagation due to 

material nonlinearity and hysteresis is studied after impact. The objective of this paper is to 

present a numerical study of propagating pulsed and harmonic waves in nonlinear media using a 

Finite difference scheme.  This study focuses on longitudinal, one-dimensional wave 

propagation.  

 

      A bar 1 of length L1  impacts another bar 2  of length  ‘ L2‘ .  Both bars have the same 
material properties.  The left bar has an initial velocity of V0, whereas the right bar is at rest. 

The solution of this problem can be derived from the one-dimensional wave equation 

                                                         EA ∂2u/∂x2 =ρA ∂2u/∂t2                                      (1) 

                                                   V1 =V0                                             V2 =0 

 

                                                         Fig-1         (LONGITUDINAL IMPACT OF TWO BARS) 

                                      Here c (u) ≥ 0,  RN≤ 0   And     RN c(u) =0                                     (2) 

 Here   RN,  c (u)   are perpendicular to one another. 
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      Furthermore one has to  fulfill  the initial and boundary conditions of the problem  stated in   
the above figure and the standard contact conditions   (2)  which describe that no Penetration can 
occur at the contact point and also that the contact force has to be a compression force. 

The solution of   (1) is 

u (t) =   f(x-ct) + g(x+ ct) with   =c ρ
E

                                                     ( 3 ) 

Where c denotes the speed of wave travelling in the bars.  Function f corresponds to a wave 
travelling in the X-direction of the bar, while g is associated with a wave travelling in the 
opposite direction. 

ε =
x
u
∂
∂ = f’(x-ct) + g’ (x- ct)                                                     ( 4 ) 

V=
t
u
∂
∂ =c[-f’(x-ct)+g’(x-c)]                                                                      (5) 

The Normal stress  σ   in the bar is given by 

σ= Eε   = E/c ∂u/∂t    = c ρ  ∂u/∂t             (6) 

(6) Shows that there is a linear relationship between the stress at any point in the bar and the 
particle velocity. 

When a wave travels with speed   ‘c ‘along the bar,   there is also a stress pulse which travels 
with the same velocity. 

When such pulse reaches the free end of the bar, one can compute the behavior of the pulse from 
the condition that the end of the bar has to be stress free.  This leads with (5) to the condition. 

σ  = E ∂u/∂t  = E [f’(x-ct) + g’(x-ct) ] =0   ∀ t                                ( 7) 

From which a relation between   f’ and g’ follows for the free ends 

x=0 and x= l1 +l2 

f’(x-ct) =-g’(x+ct)                                                               (8) 

Thus a reflection occurs at the free ends with equal Amplitude in the stress pulse but with 
opposite velocity.  Furthermore the initial conditions can be stated for the impact of two bars can 
be defined as below. 

v= [∂u/∂t] t=0      = v0   for 0 ≤x ≤l1 

v= [∂u/∂t  ] t=0      = 0  for  l1≤ x ≤ l2 
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 =    E [ at t=0    =   f’(x) + g’(x)   = 0 for 0 ≤ x≤   l1 +l2            (9) 

From these conditions follow the initial values of f’ and g’ as 

f’(x) =
c
v
2

0− , g’(x) =    
c
v
2

0
     for 0 ≤ x≤ l1 

since f’(x) = 0; g’ (x) =0 for   l1 ≤ x ≤  l1 +l2 

The problem stated in    Fig. (1) Can be solved with the relations   above.  Since the  bar 1 has an 
initial velocity v0, one has a distribution of f’ and g’ for t=0. 

These are associated with two waves, one travelling in the X- direction and the other in the 
opposite direction. The two bodies remain in contact until 

Timp. =  
C
l 14  

Which corresponds to the time at which the reflected wave in bar 2 arrives at the contact point 
since the first bar is stress free this wave encounters a free end and hence does not enter bar 1, 
but reflects due to the stress free boundary condition.    After that time the bars are no longer in 
contact.  The final velocity of bar 1 after impact is v1=0 and for bar 2 the velocity is then v2 
=v0/2.  It is clear that there is still an oscillation due to the travelling stress wave in bar-2where as 
bar 1 is at rest. 

Which are different when compared to the wave solution above.   This is due to the oscillations 
remaining in bar 2 after impact, which is, as also the impact time, neglected in the case of rigid 
body impact. So one has to study the Non-linear material behavior in order to get the wave 
propagation nature in impact problem. At the same time the impact time is very short and the 
stresses generated are high.  Hence the Numerical methods to solve impact problems have to 
consider Non-linear   material behavior and have to be designed for short time responses.  Due to 
the possibility of high oscillatory responses near wave fronts we have to be careful when 
developing algorithms of impact problems.   Moreover we have to consider the wave front 
characteristics within the Numerical scheme. 

Here One –dimensional wave propagation in non-linear medium problem is considered. It is 
interesting to find that the well known non-linear elastic stress-strain relationship is a special 
case of integral relationship.  By using this relationship   from McCall and Guyer model of 
hysteretic materials can also be derived .Here we established a quadratic relation between stress 
and strain. Kurganov and   Tadmor solved this nonlinear hyperbolic problem by high –resolution 
schemes.  Here we made an attempt to solve the problem by Finite difference schemes.  In the 
Finite difference   scheme Iteration across the time level method is applied at selected time level.  
This process reduces the nonlinear partial differential equation to a linear partial differential 
equation.  The reduced partial differential equation is solved by Finite difference method. 
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    ( 13 ) 

Where ε0  is the initial strain, s = sign ( )'ε , α  is a constant  , and  f(ε  )  and  g(ε  )  are functions 
to be determined  for a given material.  In the above governing equations (10) , (11)  a dot overhead  
denotes derivative with respect to time.  Macki et al. (1993) and Mayergoyz (1991) show that with 
proper selection of , the constitutive law described by  (10)   or  (11) can be used to 

(σ ) , 'εε  = f ( ) ε  +[                                  (11) 

τ
τ
τταεεσαε

ε
εεσ ετα

ε
εα

ε

ε d  e ] d
)df(- ){[ s- e )]()([)() ,( ]-s[]s[ 

00

'

0

0 ∫−−=
∂

∂ − gfsg          

(10) 

The study of wave propagation in materials and their characterization is a challenging area.  
Traditional ultrasonic techniques rely on wave propagation in linear elastic media.  However, 
techniques based on the propagation of nonlinear waves are often more effective for evaluating and 
characterizing physical properties pertaining to reliability, durability and remaining life of materials 
and structure components.  In addition some materials are inherently nonlinear such as rocks. 

There has been extensive work in the published literature on nonlinear wave propagation.  Kolsky 
(1963), Bland (1969), Debnath (1997), Drumheller (1998), Whitham (1999), Hamilton and 
Blackstock (1998) and Naugolnykh and Ostrovsky (1998) for an introduction and review of suitable 
techniques.  The revise article by Norris (1998) provides a comprehensive review of nonlinear wave 
propagation in solids. 

 

1.  Nonlinear Governing laws: 

For materials under plastic deformation, Materials with distributed damage, linear elastic Hooke’s 
law is usually inadequate to describe their nonlinear, inelastic behavior.  Various constitutive laws 
have been proposed.  Here we study the class of materials whose behavior can be described by the 
following stress-strain relationship. 

Integration gives 

τ
ε τ

ττεσ
ε

εαεε d  ]  
d

)df( - )([    )] f(- (
0

0e ][ s
00 ∫+− g

 ) g( and  )f( , εεα

describe a vast   range of material behavior. 

The traditional nonlinear elastic stress-strain law which is related to (10) or (11) is obtained by 
taking the assumption that no initial stress and strain. So that 

τ
τ
ττααε

ε
εεσ ετα

ε
εα d  e ] d

)df(- ){[ s- e )]0([)() ,( ]-s[s 

'

0
∫−=

∂
∂ gfsg

By selecting  0=α    and 

) - -E(1  )( 2εδγεε =g                                                       (14) 
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One can reduce the stress-strain relationship of (13) to the well-known nonlinear elastic constitutive 
law, 

                                                               (20) 

  (Special case of   (11) or (12))         

(19) 

                                      (17) 

Where E is the second order Elastic (Young’s) modulus.  Eγ  is called the third order elastic 
constant, Equation (15) was derived by Landau and Lifshitz (1959) by expanding the strain energy 
density function for hyper-elastic materials. 

 ) ,( '

=
∂

∂
ε
εεσ

 ..... - - -E(1 2εδγε )                                                                      (15) 

Equations (15) do   not show any hysteresis in the stress-strain relationship.  The hysteretic behavior 
is accounted for by using a nonzeroα .  Means, call  α  the hysteresis parameter. B y substituting 

s
E-  f(0)   , )  E(1- )g(  )( εεαε

ε
ε ∆

=∆+=
d
df

                                      (16) 

In the equation (13) we get 

e E  ) 1 ( E)() ,( s-
'

εαεαε
ε
εεσ

+∆+−=
∂

∂ g

For small values of  α  

εαεα s  1    ±≈±e s
                                                                            (18) 

Equation (17) together with (14) reduces to 

] )s( - -  -1 [ E ) ,( 2
'

εεαεδγε
ε
εεσ

+∆=
∂

∂

This is identical to the stress-strain relationship derived in McCall and Guyer (1994); Guyer and 
McCall (1995) and Van Den Abeele et al.  (2000a, b). 

Now, we consider a one-dimensional problem of wave propagation through a nonlinear medium. For 
small strain deformation, the equation of motion can be written as (Achenbach, 1999) 

t
u

x ∂
∂=

∂
∂

2

2

    1 σ
ρ

Where u(x, t) is the displacement in the x-direction, ρ  is the mass density, and  )t  x,( σ   is the 
normal stress in the x-direction.  For the small strain deformation considered here, the normal strain 
in the x-direction is 
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               x
u 

∂
∂

=ε                                                   (21) 

                       (26) 

Clearly, when γ  , the material is linear elastic.  The parameter   γ  indicates the amount of 
material nonlinearity.    The parameter γ  defined here is identical to the acoustic nonlinear 
parameter (Cantrell and Yost, 1990).  The acoustic nonlinear parameter arises in metals due to lattice 
anharmonicity which is usually very small in comparison to the elastic deformation of the metals.  
So we can study stress-strain curves for various values of  ϒ .  For choice γ  =10000, γ =5000 and  
γ  =2500 respectively.   From (25) dictates that the material behaves differently in tension and 
Compression, although the difference is only to the second order.  In the literature, such material 
behavior is sometimes referred to as pseudo elastic. To model materials with identical nonlinear 
tensile and compressive behavior, only the quadratic terms in    (15) should be used 

So that                                                          (25) 

Where E is the elastic Young’s modulus and   c=    can be considered as the phase velocity. 

This nonlinear equation   is solved by applying finite difference method.  In the middle Iteration 
across the time –step concept is introduced. 

                                           

(23) 

Next assume that the nonlinear constitutive relationship of the medium be described by 

                            ) ,(  'εεσσ=                                       (22) 

Apply (22)     and c= 
ρ
E        in (20) yields 

  1] - 
E
1[        - 

t
 1

2

2

2

2

2

2

2 x
u

x
uu

C ∂
∂

∂
∂

=
∂
∂

∂
∂

ε
σ

ρ
E

From equation   (15) the case of a nonlinear material defined by the first two terms so that 

 
) ,( '

=
∂

∂
ε
εσ ε    ) -E(1 γε                                                                    (24) 

 )  
2
1 - (  E  2εγεσ =

0  =

Apply (25) in (23) 

xt
uu

∂
∂

∂
∂

∂
∂
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2
2

2

2

  ) 
x
u-1 (   c γ
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This is the same equation derived by Gol’dberg (1961) based on the first principles of classical 
elasticity. Numerical methods can  be applied to study the solution behavior ( 26 ) .   All evaluations 
are based on the conservation law. 

                ( 30) 

Where   =  β        x
u-1 ( c 2

∂
∂γ  ) 

 β   (                        (29) )  2- uu j1,-iji,,1 ++u ji

    
h
k

2

2

x
u-1 ( c2

∂
∂γ  ) (u  )  2- uu j1,-iji,,1 ++ ji

k
uuu

2
1-ji,ji,1ji,   2- 

 
++  =  )  

h
uuu

2
j1,-iji,j1,i   2- 

 
++

 

2.  Numerical solution of wave equation: 

Apply  Finite difference Scheme  on  equation  ( 26) so that it becomes a  difference equation , 

x
u

∂
∂

 value  write as it is and it’s value is calculated  at each iteration.   This process helps us to 

solve the Numerical scheme with out Non-linear equations.  This method is called iteration across 
the time step. 

k
uuu

2
1-ji,ji,1ji,

2

2   2- 
    

+
= +

∂
∂
t
u

                                                                                                           

(27) 

h
uuu

2
j1,-iji,j1,i

2

2   2- 
    

+
= +

∂
∂
x
u

        (28) 

x
u-1 ( c2

∂
∂γ

=++   u  u2- 1-ji,ji,1,u ji

 

=++   u  u2- 1-ji,ji,1,u ji

h
k

2

2

 )    (    ) -1 2(  -  uuuu j1,-ij1,iji,1-ji, 1, +++= ++ ββu ji

Formula  ( 30 ) shows that the function values at the j th  and  j-1th  time levels are required in order 
to determine those at the  (j+1)th  time level. We have to select the mesh ratio 

h
k

=α 1≤   In order to get the   convergent solution. 
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The boundary conditions are u(0,t) =0  u(0,jk ) =0 for j = 1,2,3…… ⇒

U( 15, t ) = -0.03    ⇒ u(15,jk)=-0.03 for j = 1,2,3….. For         t>0 

0t

  )  (
=∂

∂
t
u

=   v0; 0   so that 5.7≤≤ x

0t

  )  (
=∂

∂
t
u

=   0; 7.5≤  15≤x

kv  u  0i,01, +=⇒ ui                                                       (31) 

   u i,01, =⇒ u i                                                     (32) 

Initial displacement u (l1,0 ) = 0.5 sinx 

)ih  sin( 0.5  )0,5.7( =⇒ u                                            (33) 

Apply the iteration across the time-step method with specific numerical code we can get the 
following results.  Also the wave propagation    is also plotted with various time levels with v0 =0.5 
m/s 
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                                                              Figure 1Non -linear wave propagation
 

3.  Numerical results: 

Level-1: 

0.5            0.06092 
1                0.10718 
1.5              0.127687 
2                 0.117662 
2.5              0.079809 
3                 0.02364 
3.5             -0.0368479 
4               -0.0866003 
4.5             -0.113191 
5               -0.109866 

5.5             -0.0771925 
6                -0.0229269 
6.5              0.03989 
7                0.0961233 
7.5              0.13225 
8               0.13967 
8.5            0.116811 
9                 0.0695148 
9.5              0.00960611 
10              -0.0480026 

10.5            -0.088962 10.5            -0.088962 
11              -0.102999 11              -0.102999 
11.5           -0.0864315 11.5           -0.0864315 
12              -0.0430716 12              -0.0430716 
12.5            0.0167098 12.5            0.0167098 
13              0.0785209 13              0.0785209 
13.5            0.127473 13.5            0.127473 
14               0.151826 14               0.151826 
14.5            0.145862 14.5            0.145862 
15               0.111286 15               0.111286 

Level-2: 

0.5 0.135289 
1   0.237945 
1.5 0.283322 
2   0.260802 
2.5 0.176386 
3   0.051234 
3.5 .0835243 

5.5-0.174153 
6 -0.0536828 
6.5 .0858074 
7   0.210655 
7.5 0.290782 
8    0.30706 
8.5 0.255994 

10.5 .202572 
11-0.234016 
11.50.197392 
12 -0.101177 
12.50.0315613 
13  0.168814 
13.5 0.277467 
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4  -0.194405 
4.5-0.253772 
5  -0.246599 

9  0.150577 
9.5 .0171066 
10 -0.111248 

14   0.331407 
14.5 0.317918 
15   0.524829 

Level-3: 

0.5 0.284054 
1   0.499296 
1.5  .593763 
2   0.545058 
2.5 0.365843 
3  0.100729 
3.5 -0.18464 
4  -0.419661 
4.5 0.546058 
5  -0.532151 

5.5 0.380609 
6  -0.127802 
6.5  0.16511 
7   0.427146 
7.5 0.594885 
8  0.627992 
8.5 0.519098 
9  0.295597 
9.5 0.012944 
10 -0.258922 

10.50.45270411 
11  -0.520226 
11.5 -0.444217 
12   -0.242556 
12.5 0.0361203 
13   0.324315 
13.5  0.552204 
14    0.664725 
14.5-0.0125258 
15      2.6067 

 
Level-4: 
 
0.5    0.436569 
1        0.76723 
1.5        0.912005 
2        0.836427 
2.5        0.559981 
3        0.151328 
3.5        -0.2885 
4        -0.650837 
4.5        -0.845991 
5        -0.825204 

5.5        -0.592584 
6        -0.204107 
6.5        0.246096 
7        0.648776 
7.5        0.906326 
8        0.956663 
8.5        0.788448 
9        0.44384 
9.5       0.00819363 
10        -0.410852 

10.5       -0.709718 
11        -0.814258 
11.5       -0.697889 
12        -0.388132 
12.5       0.0401606 
13        0.483102 
13.5        0.833227 
14        1.04108 
14.5       -0.522624 
15        4.97338 

Level-5: 

0.5 0.401638 
1   0.706164 
1.5 0.840245 
2   0.77228 
2.5 0.520126 
3   0.146751 
3.5 0.255209 
4  -0.586116 
4.5-0.763729 
5  -0.743334 

5.5 0.528708 
6  -0.171163 
6.5  0.24297 
7    0.61354 
7.5  .851021 
8   0.898517 
8.5 0.745602 
9   0.430953 
9.5 0.032826 
10 -0.350077 

10.5 .622793 
11 -0.717303 
11.50.609284 
12 -0.323911 
12.50.070126 
13  0.477615 
13.50.862448 
14  -1.71805 
14.5 11.4623 
15  -14.2961 
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4.  Result Analysis: 

      When ever impact occurs the velocities of the two objects are changes according to the starting 
compression force applied at the impact point. When ever an impact occurs a longitudinal sound 
wave is generated   and it propagates in the region upto free end of the second object. When it 
reaches to the free end a reflection occurs.  That is why the boundary condition at the free end is 
assumed as negative but small in magnitude. 

     The displacement in terms of the length of the impact system with respective to time is drawn in 
Figure-1.  It gives the following inferences. 

1) The Longitudinal sound waves harmonic in the given slot of time interval, since the 
amplitude of u(x, t) fluctuates about the mean position zero. 

2) The progression of waves exhibits higher harmonic generation, since the                  
u(x, t) repeats at the certain length of propagation. 

3) The impact of collision of the material shows the vibrational state with in the system with 
Non-linear behavior. 

4) The smooth curve interprets the uniform distribution of molecules of materials in other words 
the defects and imperfections are might be absent (almost) in the system. 
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