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Abstract: 
A normalized function f analytic in the open unit disc around the origin and non vanishing 
outside the origin can be expressed in the form z/g(z) where g(z) has Taylor coefficients bn’s. 
Coefficient conditions in terms of bn’s are derived for functions in the classes ST(K), and SP(λ,ρ) 
of  univalent analytic functions. 
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Introduction:      Let A1 be the class of   functions  f  analytic in U = { zC: z<1}, and  
normalized by f(0)=0,  f (0)=1 where C is the set of complex numbers. An  f  in A1   with  f(z)0 
in the punctured disc  U\{0}, may be expressed as g(z)z=ψ(g)=f(z) /    in U,  

where 


1
1

=n

n
n zb+=g(z)  in U. We call bn’s , the inverse coefficients  of  f.  

            Mitrinovic [1],Prawitz[2], Reade et.al [3] ,Silverman and Silvia[6] and Srinivas[7,8] 
studied  these coefficients bn’s. 
 
            Mitrinovic [1] obtained estimates for the radius of univalence of certain rational  
functions.  In   particular, he found sufficient conditions for functions of the form 

                                                ,
zb++zb+zb+

z
n

n...1 2
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bn  0 , to be univalent in the unit disk  U.  
 
      Prawitz[2] determined the following necessary condition in terms of bn’s of g(z) when  
 
f= )(g  is in S, the subclass of A1 of functions univalent in U: 
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     Silverman and Silvia [6] found necessary conditions in terms of bn ’s for ( )g  to be starlike 
of order α with negative Taylor coefficients . They found that for such  ( )g  
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Reade et al [3] found that, if  
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 Srinivas [7] found sufficient condition on 

B(α) as  

       i)          
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Let K>0 and f be regular and locally univalent in U . Then f is said to be in the class C(K) if and 
only if  
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This class was introduced by Wirths [9]. We define an Alexander’s type of class related to this 
class C(K) as 
                                            ST(K)  : ( ) .zf f C K   
       Let SP(λ,ρ) be the class of functions f in A1 for which  

                                    ( )Re cos ,
( ) 2

ie zf z
f z
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       
  

 

for all z in U where 0≤ρ<1. An f in SP(λ,ρ) is called λ-spiral of order ρ. 
 
         In this paper some necessary conditions on bn’s  for some particular form of functions f’s in 
the classes ST(K) and SP(λ,ρ) are derived.   
 
                                                        Section1 
 
  First we derive a necessary condition for the class ST(K): 
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Theorem1. If  
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Proof: For 
n 1
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in U -{0}, by the Alexander type relation between the classes C(K) and ST(K) and the local 
minimum property due to Wirths [9] for the curvature κ ( f ; z). Thus, for z ),1,0(  we have  
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By  letting z tend to 1- along the positive reals , we obtain the required inequality (4). 

Remark: For 
n 1

( ) /(1 ) ST(K), n
ng z b z





   the inequality (4) is stronger  than the inequality  

(1) of Prawitz [2], where 0<K<1 and bn’s are complex. 
 
                                                           Section2 
 
Next a necessary condition is derived for functions of particular form in the class SP(λ,ρ). 

Theorem2. If 
n 1
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in U.  Now letting z tend to 1- along positive reals, the inequality (5) is obtained. 
 
Remark. The inequality (5) is stronger than the inequality (1) of Prawitz [2] for functions 

n 1
( ) /(1 ) SP( , ), n

ng z b z  




    when   bn’s are complex. 

     Taking λ=0 and ρ=α in Theorem2 the next result is obtained. 
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Corollary1 If *

n 1
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Remarks (i) Necessary condition (6) and sufficient condition (2) suggest that an analytic 

function 
n 1

( ) /(1 )n
ng z b z





  , , nz U b ’s are complex , is in the class S*(α), 1/2≤α<1, if and 

only if , the inequality  (6) holds. 

                  (ii) It can be verified, for functions 
n 1
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ng z b z
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are complex, that   

                                       
1
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
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Thus, in view of (ii) of (3) a necessary and sufficient condition for the function  

n 1
( ) z/(1 )n

ng b z




  , bn‘s are complex to be in B(α), 1/2≤α<1, is that  the condition (7) holds. 
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