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Abstract 
This paper presents application of Artificial Neural Network (ANN) based contingency 
analysis of power system. The ANN has been chosen because of its high adaptation parallel 
information processing capability.  Another feature that makes the ANN more suitable for 
this type of problems is its ability to augment new training data without the need for 
retraining. In this Multilayer Feed Forward network is used for contingency analysis in 
planning studies where the goal is to evaluate the ability of a power system to support a 
projected range of peak demand under all foreseeable contingencies. This work involves 
selection of network design, preparation of input patterns, training & testing. In order to 
generate the training patterns three system topologies were considered. Training data are 
obtained by load flow studies (NR Method) for different system topologies over a range of 
load levels using software simulation package (Mipower) and the results are compiled to 
form the training set. For training the ANN back propagation algorithm is used. The proposed 
algorithm is applied to a sample six bus power system and the numerical results are presented 
to demonstrate the effectiveness of this proposed algorithm in terms of accuracy. It is 
concluded that the trained ANN can be utilized for both off-line simulation studies and on 
line estimation of line flows and voltages.  
 
Key words: Contingency Evaluation, Load flow study, Artificial Neural Network.    
 
 
1.0 Introduction 
Contingency evaluation is one of the most important tasks encountered by planning and 
operation engineers of bulk power systems. In planning, contingency analysis is used to 
examine the performance of a power system and the need for new transmission expansion 
due to load growth or generation expansion. In operation, contingency analysis assists 
engineers to operate the power system at a secure operating point where equipment are 
loaded within their safe limits and power is delivered to customers with acceptable quality 
standards. In general, the state of a system is determined based on its ability to meet the 
expected demand under different contingency levels. In this type of analysis the objective is 
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to find over loads or voltage violations under such contingency and the proper measures that 
are needed to alleviate these violations. Finding these contingencies and determining the 
corrective actions often involves exhaustive load flow calculations. The necessity for such a 
tool is increasingly critical due to the emerging complexity of power systems that results 
from network expansions and the fact that power systems are pushed to operate at their limits 
due to financial and environmental constraints. 
  
2.0 Review of Basic Methods  
There exist many methods for contingency evaluation of bulk power systems [1-3]. AC Load 
flow method, PSC (Power Supply Capacity) Calculations, DC Load flow method and 
Sensitivity Analysis & Distribution factor. AC Load flow and Power Supply Capacity (PSC) 
calculations [1] are most accurate methods. The basic concept of the PSC method is to 
determine the maximum amount of power each bus can deliver subject to generation 
capacity, power flow constraints and equipment rating. These two approaches involve a huge 
number of AC load flow calculations to determine line flow and bus voltage for each 
contingency. This computation poses a challenging task even for today’s fast computers and 
efficient algorithms. The analysis and interpretation of these calculations present an even 
harder problem. Another deficiency is that contingency analysis uses fast converging load 
flow algorithms, such as Fast Decoupled Newton Raphson (FDNR) algorithm that has poor 
convergence characteristics when dealing with heavily loaded power system. There are many 
other techniques that simplify contingency analysis. DC load flow is one of the most popular 
methods that are used to reduce the computational efforts required by the AC power flow to 
an acceptable level [2]. However, it can only provide a good estimate of the MW flow under 
each contingency. Therefore voltage violation and line overload due to excessive VAR flow 
can’t be detected using this method. Another technique uses sensitivity analysis and 
distribution factor [3] but it is not guaranteed to provide accurate line flow solution since it is 
based on a linear model to approximate the solution especially in highly loaded power system 
where the non-linearity is a significant factor.                
Recently, artificial neural networks (ANNs) have been utilized for contingency screening [4 - 
9]. However, most of these applications use ANNs as a tool to classify the system states 
under contingency to secure or insecure states. This approach is used mainly for real time 
operation at power control centers where the objective is to provide the operator with an 
indication about the state of the power system. Clearly, this formulation is not sufficient for 
planning purposes where there is a need for more elaborate studies to compare alternative 
expansion plans based on quantitative economic and reliability factors. In [4], a linear ANN 
structure was used with non-linear feedback loop as a tool to solve power flow problems. It 
estimates bus voltage magnitude and angle in a manner similar to standard power flow 
algorithms. The linear ANN structure is used to estimate required adjustments in bus voltage 
magnitude and angle based on power mismatch at each bus. This estimated voltage 
adjustment is then used to calculate the line flow using power flow equations. Calculated 
flows combined with net bus injections are fed back to the ANN and the process keeps 
repeating until reasonable error is reached. However, the use of linear model limits the 
mapping capability of the neural networks. 
The Hopfield model was used to classify the contingency by learning to recognize the 
number and type of limit violations associated with each contingency [5]. It uses a linear 
programming technique to optimize the ANN classification accuracy. The violation pattern 
that results from each contingency is constructed using a binary matrix in which violations 
are assigned a binary code.    
The application of Kohonen’s Self-organizing feature map provides a fast contingency 
assessment tool for real time operations [6]. The operating point of the system is presented to 
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the ANN as a vector of line active and reactive power flows obtained from running load flow 
under different conditions. The state of the system can be determined by estimating how far 
the operating point is away from the safe operating boundaries of the system, Kohonen’s self 
organizing map was also used to identify similarities in system state variables (line flows and 
bus voltages) under different contingency [7]. The network is trained to produce a feature 
map that relates each contingency and pre-contingency state parameter to post contingency 
attributes. A modified version of this method is presented in [8], where a supervised ANN is 
used to provide rough estimates of post contingency line flows and bus voltages and an 
unsupervised ANN to that uses the outputs of the supervised ANN to classify contingency. 
Contingencies are classified in to different groups based on their impact on the system. A 
separate supervised ANN is used for each group of contingencies to provide a more accurate 
estimate of post contingency voltage and line flow patterns. One difficulty with this method 
is that it requires a large number of supervised ANNs. Neural Networks were also used for 
security assessment of large–scale power system [9]. The system is split up into small 
subsystems and each one is handled separately using different ANN. The basic principle of 
this approach is similar to those presented in [5-8], that is to apply the pattern recognition 
capability of ANNs to classify the system. The boundary buses are selected based on network 
sensitivity analysis. With the exception to [4], contingency evaluation is used to classify the 
system to either secure or insecure states, which is more useful in real time operation. 
Another important observation on these approaches is that ANNs are not trained on the 
relation between the system parameters that affect the power flow and bus voltage, such as 
bus load, generation distribution and system impedance. They employ ANNs for the mapping 
of a pre-contingency voltage and power flow patterns to a post contingency voltage and 
power flow patterns. This mapping is more suitable for on-line contingency analysis where 
the real objective is to provide the operator with a list of critical contingencies. 
      
3.0 Proposed Approach 
The proposed approach is the application of Artificial Neural Network for contingency 
Evaluation of Electrical Power System. ANN is more ideal for this type of problems is its 
ability to augment new training data without the need for retraining. Here feed forward 
network is used for contingency analysis in planning studies where the goal is to evaluate the 
ability of a power system to support a projected range of peak demand under all foreseeable 
contingencies. If a transmission expansion is necessary, then it must yield the maximum 
improvement to the system. For large-scale power system contingency evaluation, extensive 
studies need to be carried out considering the following factors; 
 Number and type of possible contingencies and their combinations.  
 Expected range of peak loads with a margin for forecasting error and  
 Different generation scenarios based on efficiency and availability of generating units. 
To optimize a transmission expansion plan, combinations of these factors need to be 
considered to cover all possible operating conditions. This process may produce a huge 
number of cases to be evaluated. A neural network needs to be trained on a limited set of 
cases that covers the operating boundary conditions for a given power system. To optimize 
the planned expansion, the trained (network) ANN is used for contingency evaluation under 
other operating conditions.   
4.0 Artificial Neural Network 
An Artificial Neural Network is a computing system made up of number of simple and highly 
interconnected processing elements which process information by its dynamic state response 
to external inputs. In recent times the study of ANN model has gain rapid and increasing 
importance because of the potential to offer solutions to some of the problems which have 
hitherto been intractable by standard serial computers in the areas of computer science and 
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artificial intelligence. Instead of performing a program of instruction sequentially neural net 
models explore many computing hypothesis simultaneously using parallel net composed of 
many computational elements. No assumptions will be made because no relationships will be 
established. Computational elements in neural networks are non-linear models and are also 
faster. Hence the result comes through non-linearity due to which the result is very accurate 
than other methods. Because of these reasons neural networks find their applications in 
achieving human like performance in the fields such as speech processing, image 
reorganization, machine vision, robotic control etc. 
 
4.1 Multilayer Feed Forward Neural Network 
The Fig.1 shows the schematic representation of a Feed Forward Network, which is 
commonly used in ANN model. Processing elements in the ANN are called neurons. These 
neurons are interconnected by Information channels. Each neuron can have multiple inputs 
but only one output as shown in Fig. 2. Inputs to the neuron can be from external stimuli or 
from the output of other neurons. There is an interconnection strength called weight 
associated with each connection. When the weighted sum of the inputs to the neuron exceeds 
a certain threshold, the neuron is fired and output signal is produced. The neurons are divided 
into several layers; one input layer, one output layer and some hidden layers. 

 

 
These hidden layers are in between input and output layers. The neurons in the input layers 
takes the input signal and pass it to the hidden layers after giving some weightage to the 
signal. Only the neurons in the output and hidden layer perform activation function. The 
number of neurons in the input layer will be equal to the number of input signals. There is no 
hard and fast rule for selecting the number of neurons in the hidden layers. One assumption 
says that the number of neurons in the hidden layer should be equal to the square root of the 
product of input and output layer neurons. But the actual number of neurons in it depends 
upon the accuracy and fastness required. In this type of network the signals can only be 
propagated from input layer to hidden layer and from hidden layer to output layer, i.e. only in 
forward direction, hence the name Feed Forward Network. 
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4.2 Training the Network 
The network can recognize input patterns only when the weights are adjusted or tuned via 
some kind of learning process called training. Collection of samples is divided into subsets. 
These subsets are presented to the network one at a time. If the outputs of these samples are 
known, then process is called supervised training. If the outputs are not known the process is 
called unsupervised training. One pass through this cycle is called epoch. The number of 
training samples in a subset of total samples is called epoch size. There are two methods of 
training the network: 
i) Back propagation algorithm. 
ii) Conjugate gradient algorithm. 
The back propagation algorithm is the most frequently used method in training the network. 
This is also called generalized delta rule. 
 
4.3 Generalized Delta Rule 
An error signal proportional to the difference between what the output is (reference) and what 
is supposed to be (target) produced. Then the weights of the network are changed in 
proportion to the error times the input signal, which diminishes the error in the direction of 
gradient. 
Let the sum of the squared errors to be minimized be  
Ep =   (tpm- Opm)2                                                  

(1)    
                 2 
Where p = presentation number. 
tpm = target output for yth component of pth pattern. 
Opm 

= actual output for yth component of pth pattern. 
To obtain a rule for adjusting the weight the gradient of Ep with respect to the weight Wym is 
used. Where Wym is the weight between Yth & mth neuron. From the descent gradient 
algorithm, the change in weight is proportional to the gradient of error and it should be in 
such a direction that the error is decreasing.  
Hence, Wym    -Ep 

                             Wym 

           Wym  - Ep      *    Opm 
                           Wym        Opm 
 
Then, error signal is defined as 
           pm  =  -Epm                                                                                                                   (2) 
                                 Opm 
 
Hence equation (2) becomes 
 Wym   pm    *    Opm                                                                                                               (3)
                   Wym   
This can be manipulated 

Wym =  * pm * Opy                                                                                                                                                  (4) 
 Where,  = adaptation gain = learning rate parameter 
The error signal is defined in two ways: 
(i) If neuron ‘m’ is one of the output layer  
     pm   = (tpm-Opm) * Opm * (1-Opm)-                                                                                                                                 (5) 
(ii) If neuron Y is not from the output layer 
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      py = Opy * (1-Opm) * pm   * Wym                                                                                                                             (6)      
                 
4.4 Back Propagation Algorithm 
Step-1: A subset of training samples is presented to the network .The output of the neurons is 

computed using following equations. For each neuron in the input layer, the neuron 
output is the same as the neuron input for any neuron `m’ in the hidden or output 
layer, the neuron input is   Netpm = Wmy * Opy                                                                                                   
(7) 

              Where y=1, 2…n. the neuron in the preceding layer 
                        Opy =output of yth neuron in the preceding layer.  
              The output of neuron `m’ is, 
              
                Opm =                        1                                                                                                                                                     (8) 
                   1+ Exp {-(netpm   -pm))/ om} 
               Where pm =threshold; om = abruptness of the transition 
Step-2: The sum of the squared errors is generated using equation (1). 
Step-3: If the error is greater than the tolerance limit, the error signals are generated using 

equations (5) and (6) otherwise go to step 6. 
Step-4: The change in weight is calculated using equation (4) 
             To improve the convergence characteristic, a momentum term `’ is introduced as 
follows: 
             Wym (n+1) =*pm*Opy+ [Wym (n)-Wym (n-1)]                                                           (9) 
             Where n =iteration count. 
                       = momentum gain. 

           = adaptation gain 
              Then the new value of weight is  
                  Wym (n+1) =Wym (n) +Wym (n+1)                                                                                                                (10) 
Step-5: The iteration count is incremented and step1 to 4 are repeated  
Step-6: Presentation number is incremented and other subsets of training samples are 

presented to the network. If all the subsets are over, the program is terminated.  
 
4.5 Activation Function 
The activation function is a non linear function that, when applied to the net input of the 
neuron, determines the output of that neuron. A majority of ANN models used a sigmoid 
function as activation function. It may be defined as a continuous, real valued function whose 
domain is real and its derivative is always positive. The most commonly used sigmoid 
function is the logistic function given in the Fig.3.  

 
Fig. 3 Sigmoid Activation Function 
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It is defined by the equation 
 
F (x) = 1                                                                           (11) 
                   1 + exp {- (netj - j) / 0}  

 

This function yields an output that varies continuously from 0 to 1. The quantity j serves as a 
“Threshold” and positions the transition region of the function. The quantity 0 determines 
the abruptness of the transition. The advantages of using this function as activation function 
are  
 
i) Its derivative can be easily found. 
    f 1 (x) = f(x) * ( 1- f (x) ) 
 
ii) Computer takes less time to evaluate this function.    
     Hence, the training speed will be higher.   
 
4.6 Threshold 
The threshold j positions the transition region f the activation function. The effective input to 
the neuron will be (netj - j). The values of these should also be learnt by the network. These 
are learnt by taking j   to be equivalent to another weight connecting the neuron ‘j’ to lower 
layer neuron, the output of which is always unity. The thresholds are also called bias for the 
neurons. 
 
4.7 Inputs to the ANN  
 A large number offload patterns have been generated in a wide range of system operating 
conditions (60-110%) and AC load flow has been performed to obtain the line-flows for each 
case. The results are compiled to form the input patterns (i.e. the real and reactive power 
injections affecting a line-flow most) are selected.  
 
4.8 Training 
For each line, supervised learning has been applied for accurate estimation of line-flows 
using Artificial Neural Network.  
 
4.9 Solution Algorithm  
The solution algorithm is given in the form of flow chart 
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5.0 Case Study  
To illustrate the proposed approach, IEEE-6 bus system is considered as shown in Fig. 4.  In 
this work our goal is to examine the generalization capability of the ANN in the scope of 
being able to deal a large range of operating conditions and changes in network topology. 

 
Fig. 4. Single Line Diagram of IEEE-6 Bus System 

 
The IEEE 6-Bus System has four generators at buses 1, 2, 3, & 4 and loads at bus 2, 5, and 
6. Bus 2 has both generator and load. In order to generate the training data patterns, three 
system topologies and load variations were used; Topology 1 with all lines in service; 
Topology 2 with line 2-5 Outage; Topology 3 with line 3-4 Outage. For each topology 16 
different loading conditions are selected with loading level of the system in the range from 
0.6 to 1.2 relative to the nominal operating point. Power factor of the loads are maintained at 
their nominal values. The training data set consists of 48×29 dimensional patterns labeled 
with their corresponding line flow values or bus voltages. The training and testing data are 
obtained by conventional NR load flow method using commercial Mipower Software 
Package, for different system topologies over a range of load levels. Although one MFFNN 
could be used to solve this problem, in this work three MFFNNs are used; two for line flows 
and other for bus voltage magnitude this produces better generalization result to reduce the 
over all number of weights needed to represent the over all relation. The line flow neural 
network is trained to map the Y- bus matrix, busload and generation injection to the line flow, 
while the bus voltage maps the same inputs to the bus voltage. The Y-bus represents the 
network topology under all possible transmission contingencies, while the busload and 
generation injection vectors represent possible variation in load and generation distribution 
patterns based on forecasted and generation scenarios.   
5.1 Inputs to the Network 
Input patterns to the neural network are obtained from NR Load Flow solution. Following are 
the variables; 
i) Self and Mutual Admittances 
ii) Complex Bus Loads 
iii) Complex Bus Powers 
An Artificial Neural Network having three layers with number of neurons in input layer 
Ni=29, chosen to be the same as that of the input variables, number of neurons in hidden layer 
Nh=6 and output layer No=1 neuron was selected. For training MFFNN, back propagation 
algorithm is used. After training, the least squared error (E) is reduced to 0.0001058 in 50000 
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presentations of training data set. The parameters of the learning process are momentum 
gain α =0.25; threshold θ=0.87768089; adaptation gain η=0.8960400. The performances 
of the MFFNNs for new cases not presented during the training session are shown in Tables-
1a, 1b,1c, Table-2a, 2b, 2c, Table-3a, 3b. & 3c corresponding to different network topologies 
and particular operating condition. 
 
6.0 Estimation of Active, Reactive Power Flows and Bus Voltages  
The Tables-1a, 1b, 1c shows the comparison between actual active power flow by  NR load 
flow and estimated active power flow by ANN in different lines and operating conditions.  

 
Table-1a 

Line Flow (P) Results from NR Contingency Evaluation Method and MFFNN Based 
Algorithm for Load Level of 0.6pu 

Base Case:  All Lines in service 
Line 
 No. 

Line Flow by NR Method  
Ppq   pu 

Line Flow by MFFNN Based 
Algorithm, Ppq  pu 

Error in % 

L1 0.0316 0.0298  0.18 
L2 0.0337 0.0340 -0.03 
L3 0.0273 0.0321 -0.48 
L4 0.0374 0.0359  0.15 
L5 0.0337 0.0341 -0.04 
L6 0.0352 0.0355 -0.03 
L7 0.0327 0.0331 -0.04 

 
Table-1b 

Contingency Case I: Line 2-5 (L7) Outage 
Line 
No. 

Line Flow by NR Method  
Ppq   pu 

Line Flow by MFFNN Based 
Algorithm, Ppq  pu 

Error in % 

L1 0.0370 0.0377 -0.07 
L2 0.0359 0.0364 -0.05 
L3 0.0327 0.0317  0.10 
L4 0.0359 0.0364 -0.05 
L5 0.0320 0.0376 -0.56 
L6 0.0370 0.0377 -0.07 

 
Table-1c 

Contingency Case II: Line 3-4 (L3) Outage 

Line 
No. 

Line Flow by NR Method  
Ppq   pu 

Line Flow by MFFNN Based 
Algorithm, Ppq  pu 

Error in % 

L1 0.0396 0.0376  0.20 
L2 0.0324 0.0330 -0.06 
L4 0.0368 0.0374 -0.06 
L5 0.0396 0.0376  0.20 
L6 0.0347 0.0345  0.02 
L7 0.0320 0.0300  0.20 
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Table-2a 
Line Flow (Q) Results from NR Contingency Evaluation Method and MFFNN Based 

Algorithm for Load Level of 0.6pu 
Base Case:  All Lines in service 

 

 
 

Table-2b 
Contingency Case I: Line 2-5 (L7) Outage 

 

 
 

Table-2c 
Contingency Case II: Line 3-4 (L3) Outage 

 

 
 
 
 

Line 
No. 

Reactive Line Flow by 
NR Method, Qpq pu 

Reactive Line Flow by MFFNN 
Based Algorithm, Qpq pu 

Error in % 

L1 0.0287 0.0286 0.01 
L2 0.0271 0.0315 -0.44 
L3 0.0313 0.0309 0.04 
L4 0.0286 0.0284 0.02 
L5 0.0339 0.0328 0.11 
L6 0.0271 0.0315 -0.44 
L7 0.0312 0.0297 0.15 

Line 
No. 

Reactive Line Flow by 
NR Method, Qpq pu 

Reactive Line Flow by MFFNN 
Based Algorithm, Qpq  pu 

Error in % 

L1 0.0351 0.0318 0.33 
L2 0.0342 0.0301 0.41 
L3 0.0331 0.0328  0.03 
L4 0.0320 0.0376 -0.56 
L5 0.0351 0.0318  0.33 
L6 0.0291 0.0301 -0.10 

Line 
No. 

Reactive Line Flow by  
NR Method, Qpq pu 

Reactive Line Flow by MFFNN 
Based Algorithm, Qpq pu 

Error in % 

L1 0.0293 0.0314 -0.21 
L2 0.0306 0.0342 -0.36 
L4 0.0302 0.0297 0.05 
L5 0.0317 0.0311  0.06 
L6 0.0287 0.0286 0.01 
L7 0.0349 0.0306  0.43 
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Table-3a 
Bus Voltage Results from NR Contingency Evaluation Method and MFFNN Based 

Algorithm for Load Level of 0.6pu 
Base Case: All Lines in service 

 
Table-3b 

Contingency Case I: Line 2-5 (L7) Outage 

 
Table-3c 

Contingency Case II: Line 3-4 (L3) Outage 

 
7.0 Conclusion 
The designed ANN model has been applied to predict the line-flows and bus voltages under 
changing operating condition of the power system. Once the ANN is trained, it predicts quick 
results for unknown load patterns. The computation of line-flows by load flow analysis takes 
long time, as it should be run for any change in load/generation. On the other hand, by the 
proposed method, once the training of the ANN is successfully completed, the prediction of 
the line-flows and bus voltages is almost instantaneous. This can be used for real time 
application. The outcome of this work can be used to examine the performance of a power 
system following a contingency and the need for new transmission expansion due to load 
growth or generation expansion. In operation, contingency analysis assist engineers to 
operate the power system at a secure operating point where the equipment are loaded within 
their safe limits and power is delivered to customers with acceptable quality standards. 
 

Bus No. 
P 

Bus Voltage by 
 NR Method, Vp pu 

Bus Voltage by MFFNN  
Based Algorithm, Vp pu 

Error in % 

2 1.1039 1.1238 -1.99 
3 1.0829 1.0701 1.28 
4 1.0860 1.0407 4.53 
5 1.0421 1.0822 4.01 
6 1.0220 1.0000 2.20 

Bus No. 
P 

Bus Voltage by 
 NR Method, Vp pu 

Bus Voltage by MFFNN 
 Based Algorithm, Vp pu 

Error in % 

2 1.0420 1.0400   0.20 
3 1.0780 1.1120 -3.40 
4 1.0418 1.0838 -4.20 
5 1.0284 1.0708 -4.24 
6 1.1063 1.1088 -0.25 

Bus No. 
P 

Bus Voltage by  
NR Method, Vp pu 

Bus Voltage by MFFNN  
Based Algorithm, Vp pu 

Error in % 

2 1.0537 1.0091  4.46 
3 1.0418 1.0838 -4.20 
4 1.0114 1.0235 -1.21 
5 1.0506 1.0972 -4.66 
6 1.0406 1.0800 -3.94 
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