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Abstract

This paper presents application of Artificial Neuial Metwork (ANN) based contingency
analysis of power system. The ANN has been ch¢zen pecause of its high adaptation parallel
information processing capability. Another fea®:.¢ that makes the ANN more suitable for
this type of problems is its ability to augment ew training data without the need for
retraining. In this Multilayer Feed Forwara . >twork is used for contingency analysis in
planning studies where the goal is to eva:.dig the ability of a power system to support a
projected range of peak demand under =il fireseeable contingencies. This work involves
selection of network design, preparati==.0i input patterns, training & testing. In order to
generate the training patterns three syste n topologies were considered. Training data are
obtained by load flow studies (NR ivic"nd) for different system topologies over a range of
load levels using software simulation package (Mipower) and the results are compiled to
form the training set. For training th= ANN back propagation algorithm is used. The proposed
algorithm is applied to a sample =ix-pus power system and the numerical results are presented
to demonstrate the effectiveness of this proposed algorithm in terms of accuracy. It is
concluded that the trained. ANN can be utilized for both off-line simulation studies and on
line estimation of line flows «..d voltages.

Key words: Continger =v Evaluation, Load flow study, Artificial Neural Network.

1.0 Introduction

Contingency €. luation is one of the most important tasks encountered by planning and
operation encineers of bulk power systems. In planning, contingency analysis is used to
examine the periormance of a power system and the need for new transmission expansion
due to loau giowth or generation expansion. In operation, contingency analysis assists
engineers _to operate the power system at a secure operating point where equipment are
loadesi vyithin their safe limits and power is delivered to customers with acceptable quality
standa ds. In general, the state of a system is determined based on its ability to meet the
expected demand under different contingency levels. In this type of analysis the objective is
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to find over loads or voltage violations under such contingency and the proper measures that
are needed to alleviate these violations. Finding these contingencies and determiniig the
corrective actions often involves exhaustive load flow calculations. The necessity for such a
tool is increasingly critical due to the emerging complexity of power systems thai resilts
from network expansions and the fact that power systems are pushed to operate a* .. »ir liiits
due to financial and environmental constraints.

2.0 Review of Basic Methods

There exist many methods for contingency evaluation of bulk power systen = I1-3]. AC Load
flow method, PSC (Power Supply Capacity) Calculations, DC Loa% ‘flow method and
Sensitivity Analysis & Distribution factor. AC Load flow and Power S ipp}; Capacity (PSC)
calculations [1] are most accurate methods. The basic concept of the ¥SC method is to
determine the maximum amount of power each bus can dg'iver subject to generation
capacity, power flow constraints and equipment rating. These two a.2r0aches involve a huge
number of AC load flow calculations to determine line floy and bus voltage for each
contingency. This computation poses a challenging task even or today’s fast computers and
efficient algorithms. The analysis and interpretation of these ceiculations present an even
harder problem. Another deficiency is that contingency gnaly.is uses fast converging load
flow algorithms, such as Fast Decoupled Newton Raphsci. “©DNR) algorithm that has poor
convergence characteristics when dealing with heavilyic. led power system. There are many
other techniques that simplify contingency analysis. [*C load flow is one of the most popular
methods that are used to reduce the computational .aftu««s required by the AC power flow to
an acceptable level [2]. However, it can only provir: < good estimate of the MW flow under
each contingency. Therefore voltage violation g.« Fi::e overload due to excessive VAR flow
can’t be detected using this method. Anot > _technique uses sensitivity analysis and
distribution factor [3] but it is not guaranteer. » pidvide accurate line flow solution since it is
based on a linear model to approximate the s31i*.;on especially in highly loaded power system
where the non-linearity is a significant factor.

Recently, artificial neural networks (AN«Ns) have been utilized for contingency screening [4 -
9]. However, most of these applicativ. ~.:tse ANNs as a tool to classify the system states
under contingency to secure or insecure Siites. This approach is used mainly for real time
operation at power control centess. where the objective is to provide the operator with an
indication about the state of the ».wver system. Clearly, this formulation is not sufficient for
planning purposes where thei¢ is «'need for more elaborate studies to compare alternative
expansion plans based on quentitative economic and reliability factors. In [4], a linear ANN
structure was used with noii-."»2ar feedback loop as a tool to solve power flow problems. It
estimates bus voltage m:. itude and angle in a manner similar to standard power flow
algorithms. The linear ANN structure is used to estimate required adjustments in bus voltage
magnitude and angle bused on power mismatch at each bus. This estimated voltage
adjustment is then sew 0 calculate the line flow using power flow equations. Calculated
flows combined’ w..> net bus injections are fed back to the ANN and the process keeps
repeating until | “asonable error is reached. However, the use of linear model limits the
mapping capahility ot the neural networks.

The Hopfield . del was used to classify the contingency by learning to recognize the
number ana 2 of limit violations associated with each contingency [5]. It uses a linear
programming technique to optimize the ANN classification accuracy. The violation pattern
that rc.wis#OM each contingency is constructed using a binary matrix in which violations
are assiired a binary code.

The apy.'ication of Kohonen’s Self-organizing feature map provides a fast contingency
assessment tool for real time operations [6]. The operating point of the system is presented to
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the ANN as a vector of line active and reactive power flows obtained from running load flow
under different conditions. The state of the system can be determined by estimating h>w far
the operating point is away from the safe operating boundaries of the system, Kohonen’:: self
organizing map was also used to identify similarities in system state variables (line‘sicws and
bus voltages) under different contingency [7]. The network is trained to produ<.. > fec:ure
map that relates each contingency and pre-contingency state parameter to post coni.ingency
attributes. A modified version of this method is presented in [8], where a supervisc * ANN is
used to provide rough estimates of post contingency line flows and bus/voi iges and an
unsupervised ANN to that uses the outputs of the supervised ANN to clas ifi Contingency.
Contingencies are classified in to different groups based on their impa. an the system. A
separate supervised ANN is used for each group of contingencies to pr:vid:a more accurate
estimate of post contingency voltage and line flow patterns. One difficurty with this method
is that it requires a large number of supervised ANNs. Neural Metworks were also used for
security assessment of large-scale power system [9]. The syste...is split up into small
subsystems and each one is handled separately using different..>NN. The basic principle of
this approach is similar to those presented in [5-8], that is tc appiy the pattern recognition
capability of ANNSs to classify the system. The boundary buses ai¢ selected based on network
sensitivity analysis. With the exception to [4], contingency eve:dation is used to classify the
system to either secure or insecure states, which is mu. useful in real time operation.
Another important observation on these approaches ;s 2at ANNs are not trained on the
relation between the system parameters that affect the power flow and bus voltage, such as
bus load, generation distribution and system impedance.-i hey employ ANNs for the mapping
of a pre-contingency voltage and power flow pat*.:iis to a post contingency voltage and
power flow patterns. This mapping is more sui.able<for on-line contingency analysis where
the real objective is to provide the operator wit.. > list of critical contingencies.

3.0 Proposed Approach

The proposed approach is the application i Artificial Neural Network for contingency
Evaluation of Electrical Power System. Al N is more ideal for this type of problems is its
ability to augment new training datz :itdout the need for retraining. Here feed forward
network is used for contingency analysis in planning studies where the goal is to evaluate the
ability of a power system to suppart a projected range of peak demand under all foreseeable
contingencies. If a transmissior ‘< £pansion is necessary, then it must yield the maximum
improvement to the system. r-ar laige-scale power system contingency evaluation, extensive
studies need to be carried out considering the following factors;

e Number and type of possi.'z.contingencies and their combinations.

e Expected range of peia. 1ads with a margin for forecasting error and

o Different generatior scerarios based on efficiency and availability of generating units.

To optimize a transmission expansion plan, combinations of these factors need to be
considered to crer al possible operating conditions. This process may produce a huge
number of cases to .>evaluated. A neural network needs to be trained on a limited set of
cases that covel. the operating boundary conditions for a given power system. To optimize
the planned exnansion, the trained (network) ANN is used for contingency evaluation under
other operating c.aditions.

4.0 Artificiar -‘ural Network

An Artificial Neural Network is a computing system made up of number of simple and highly
intercuiinzCied processing elements which process information by its dynamic state response
to exte:nal inputs. In recent times the study of ANN model has gain rapid and increasing
importar ;e because of the potential to offer solutions to some of the problems which have
hitherto been intractable by standard serial computers in the areas of computer science and
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artificial intelligence. Instead of performing a program of instruction sequentially neural net
models explore many computing hypothesis simultaneously using parallel net com;'osed of
many computational elements. No assumptions will be made because no relationships will be
established. Computational elements in neural networks are non-linear models arit arc, also
faster. Hence the result comes through non-linearity due to which the result is<.. w ac.urate
than other methods. Because of these reasons neural networks find their ~<oplications in
achieving human like performance in the fields such as speech proces. ™7, image
reorganization, machine vision, robotic control etc.

4.1 Multilayer Feed Forward Neural Network

The Fig.1 shows the schematic representation of a Feed Forwe:d letwork, which is
commonly used in ANN model. Processing elements in the ANN are called neurons. These
neurons are interconnected by Information channels. Each ne:ron can have multiple inputs
but only one output as shown in Fig. 2. Inputs to the neuron can .>from external stimuli or
from the output of other neurons. There is an interconr;stion strength called weight
associated with each connection. When the weighted sum of the iriputs to the neuron exceeds
a certain threshold, the neuron is fired and output signal is.nrouuced. The neurons are divided
into several layers; one input layer, one output layer and some siidden layers.

W

Fig. 2. Multiple Inputs and Single Output

These hidden Izyers dre in between input and output layers. The neurons in the input layers
takes the input cizhal and pass it to the hidden layers after giving some weightage to the
signal. Only e neurons in the output and hidden layer perform activation function. The
number of neurons in the input layer will be equal to the number of input signals. There is no
hard and fasctule for selecting the number of neurons in the hidden layers. One assumption
says that tha/number of neurons in the hidden layer should be equal to the square root of the
proa ict/of ‘input and output layer neurons. But the actual number of neurons in it depends
upon ‘he accuracy and fastness required. In this type of network the signals can only be
propagated from input layer to hidden layer and from hidden layer to output layer, i.e. only in
forward direction, hence the name Feed Forward Network.
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4.2 Training the Network

The network can recognize input patterns only when the weights are adjusted or tunvd via
some kind of learning process called training. Collection of samples is divided intos* sets.
These subsets are presented to the network one at a time. If the outputs of these samples are
known, then process is called supervised training. If the outputs are not known t!:cp ncess is
called unsupervised training. One pass through this cycle is called epoch. T.." number of
training samples in a subset of total samples is called epoch size. There are #:2 mi1ods of
training the network:

i) Back propagation algorithm.

ii) Conjugate gradient algorithm.

The back propagation algorithm is the most frequently used method in *t2".iing the network.
This is also called generalized delta rule.

4.3 Generalized Delta Rule
An error signal proportional to the difference between what the .. >t is (reference) and what
is supposed to be (target) produced. Then the weights of ‘i{ie network are changed in
proportion to the error times the input signal, which dimin;.>es the error in the direction of
gradient.
Let the sum of the squared errors to be minimized be
Ep = (ton- Opm)?
1)

2

Where p = presentation number.
t,m = target output for y"" component of p™ pattei’i.
Opm actual output for y" component of p" patte:.
To obtain a rule for adjusting the weight the uiadient of Ep with respect to the weight Wy, is
used. Where W, is the weight betweer ¥* & m™ neuron. From the descent gradient
algorithm, the change in weight is pror_ ‘ional to the gradient of error and it should be in
such a direction that the error is decreasing.
Hence, AWym o -0Ep
MWym
AWyno-0E, * 00pm
MWym 0 Tam

Then, error signal is definec s

Spm =_-OEpm (2)
a Opm

Hence equation (2) bee es
AWym o'0pn, - * . .00pm 3)
MWym
This can be manipu.<ted
AWym = Spm * Opy (4)
Where, n =/« '2ndation gain = learning rate parameter
The error signal is defined in two ways:
(i) If 1 sai e M’ is one of the output layer
Spm 7 (tpm-Opm) * Opm * (1-Opm)- ®)
(if) If ne jron Y is not from the output layer
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Spy = Opy * (1-Opm) * Z8pm * Wym (6)

4.4 Back Propagation Algorithm

Step-1: A subset of training samples is presented to the network .The output of the-fieurcns is
computed using following equations. For each neuron in the input laye , . e nc.ron
output is the same as the neuron input for any neuron "'m’ in the hidd»>" or Gutput
layer, the neuron input is  Netpm = Wy » Opy
(1)
Where y=1, 2...n. the neuron in the preceding layer

O,y =output of yth neuron in the preceding layer.

The output of neuron "'m’ is,

Opm= 1 8)
1+ Exp {-(netym -Opm))/ Oom}
Where 6,y =threshold; 6,m = abruptness of the transii: . »
Step-2: The sum of the squared errors is generated using equ_£or (1).
Step-3: If the error is greater than the tolerance limit, th2.errui signals are generated using
equations (5) and (6) otherwise go to step 6.
Step-4: The change in weight is calculated using equation \ &)
To improve the convergence characteristic, /& i ®mentum term "o’ is introduced as
follows:
AWym (n+1) =1*Spm*Opy+ a[Wym (n)-Wym (23] )
Where n =iteration count.
o = momentum gain.
n = adaptation gain
Then the new value of weight is
Wym (n+1) =Wym (n) +AWym (n+1) (10)
Step-5: The iteration count is increme:... ".and stepl to 4 are repeated
Step-6: Presentation number is in~temented and other subsets of training samples are
presented to the network. If a2 subsets are over, the program is terminated.

4.5 Activation Function

The activation function is2 nuii tinear function that, when applied to the net input of the
neuron, determines the out2ut of that neuron. A majority of ANN models used a sigmoid
function as activation func*on. It may be defined as a continuous, real valued function whose
domain is real and its_derivative is always positive. The most commonly used sigmoid
function is the logistic’func.ion given in the Fig.3.

Onuiput (05} ]

Y
v

(et - 6} (Efciive inpui)

Fig. 3 Sigmoid Activation Function
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It is defined by the equation

F(x) = 1 11)
1+ exp {- (netj - 6;) / B0}

This function yields an output that varies continuously from 0 to 1. The quantity = seives as a
“Threshold” and positions the transition region of the function. The quantity Ay u.2rmines
the abruptness of the transition. The advantages of using this function as activa.ion function
are

i) Its derivative can be easily found.
F100 =) * (1-f(x))

i) Computer takes less time to evaluate this function.
Hence, the training speed will be higher.

4.6 Threshold

The threshold 6 positions the transition region f the activation tunction. The effective input to
the neuron will be (net;. 6;). The values of these should alsu e learnt by the network. These
are learnt by taking 6; to be equivalent to another weignt :onnecting the neuron ‘j’ to lower
layer neuron, the output of which is always unity. Th " thresholds are also called bias for the
neurons.

4.7 Inputs to the ANN

A large number offload patterns have been ger..7ated in a wide range of system operating
conditions (60-110%) and AC load flow hasis2en performed to obtain the line-flows for each
case. The results are compiled to form th* /= jut patterns (i.e. the real and reactive power
injections affecting a line-flow most) are  'acted.

4.8 Training
For each line, supervised learning has been applied for accurate estimation of line-flows
using Artificial Neural Network.

4.9 Solution Algorithm
The solution algorithm is gi:=2n in the form of flow chart
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Start

Collect system parameters for load flow study
¥

Petform MNE Load Flow Method for each load condition
¥

Form niormalized training and testing patterns store it in a data text files

I

Helect the AMH stracture and sigmoid activation function

'

Read the number of the neurons in the input, hidden & output layers, tolerance value,
tpuat data of all the input and output patterns from data text file stored in o semory

}

Initialize the initisl weights, adaptation gain 7, threshold &
mometitim gain o between -1 and +1
Iteration count IT =1

¥
L Input Pattern IF =1

|
/A

l

Caleulate the actual output

»
Fitid the maximL s error l

Calculate the error

.

<:,\,/f Iz MWax. Error -
< toleratice? IP= I|P +1
Fmdh? u;.; Eresepta&nn for Enter itpat data to test
PR BT e R developed MFFNN
&djust the weights to Print Line Flow
teduce the etror

:
IT=IT +1




Shekhappa G. Ankaliki, A. D. Kulkarni, T. Ananthapadmanabha 723
International eJournal of Mathematics and Engineering 72 (2010) 715 - 727

5.0 Case Study
To illustrate the proposed approach, IEEE-6 bus system is considered as shown in Fig: 4. In
this work our goal is to examine the generalization capability of the ANN in the 2.2 of

being able to deal a large range of operating conditions and changes in network topa'agy.

Load
Busl = — Bus 6

Ls
T Ls
G2 Lt _I 1 aad
- Load —I
Bus 2 Bus 5
Lz La
Lz
Bus 3 = ras | s 4
G4
LEGEND:
@ :Generator = : Load - == : Bus

Ly Lz L3 Ly Ls Ls, & L7 : Trarsinissiv i Lines

Fig. 4. Single Line Diagram of I 7.7:-6 Bus System

The IEEE 6-Bus System has four generators at-buses/1, 2, 3, & 4 and loads at bus 2, 5, and
6. Bus 2 has both generator and load. In orde* to generate the training data patterns, three
system topologies and load variations were_usc«; Topology 1 with all lines in service;
Topology 2 with line 2-5 Outage; Topology/3 with line 3-4 Outage. For each topology 16
different loading conditions are selected w."". :0ading level of the system in the range from
0.6 to 1.2 relative to the nominal operatisiy 20int. Power factor of the loads are maintained at
their nominal values. The training de = set consists of 48x29 dimensional patterns labeled
with their corresponding line flow values »#'bus voltages. The training and testing data are
obtained by conventional NR load flow 'method using commercial Mipower Software
Package, for different system tope’.. zies over a range of load levels. Although one MFFNN
could be used to solve this g.2blernin this work three MFFNNs are used; two for line flows
and other for bus voltage magnitude this produces better generalization result to reduce the
over all number of weighte ~eeded to represent the over all relation. The line flow neural
network is trained to map. == Y- bus matrix, busload and generation injection to the line flow,
while the bus voltage riaps the same inputs to the bus voltage. The Y-bus represents the
network topology unde it possible transmission contingencies, while the busload and
generation injection v >tars represent possible variation in load and generation distribution
patterns based ofi v *ecasted and generation scenarios.

5.1 Inputs to thaNetviork

Input patterns to u.. rieural network are obtained from NR Load Flow solution. Following are
the variables;

i) Self and M*utusl Admittances

i) Complex Bus Loads

iii) Camn' . Bus Powers

An Arificiai Neural Network having three layers with number of neurons in input layer
Ni=29, chosen to be the same as that of the input variables, number of neurons in hidden layer
Nn=6 and output layer No=1 neuron was selected. For training MFFNN, back propagation
algorithm is used. After training, the least squared error (E) is reduced to 0.0001058 in 50000
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presentations of training data set. The parameters of the learning process are momentum
gain a =0.25; threshold 0=0.87768089; adaptation gain n=0.8960400. The performances
of the MFFNNSs for new cases not presented during the training session are shown i.. =... les-
1a, 1b,1c, Table-2a, 2b, 2c, Table-3a, 3b. & 3c corresponding to different network *apolc ses
and particular operating condition.

6.0 Estimation of Active, Reactive Power Flows and Bus Voltages
The Tables-1a, 1b, 1c shows the comparison between actual active power flow by NR load
flow and estimated active power flow by ANN in different lines and operating conditions.

Table-1a
Line Flow (P) Results from NR Contingency Evaluation Method and MFFNN Based
Algorithm for Load Level of 0.6pu
Base Case: All Lines in service

Line | Line Flow by NR Method Line Flow by MFFEN Beased Error in %
No. Ppg pU Algorithm, Pn, pc

L, 0.0316 0.0298 0.18

L. 0.0337 0.0340 -0.03

Ls 0.0273 0,034 -0.48

Ly 0.0374 0.72%9 0.15

Ls 0.0337 2341 -0.04

Le 0.0352 00355 -0.03

L, 0.0327 0.0331 -0.04

T=bl-1b
Contingency C22~.1: Line 2-5 (L7) Outage

Line | Line Flow by NR Method Lire Flow by MFFNN Based Error in %
No. Poq PU Algorithm, Py pu

L, 0.0370 0.0377 -0.07

L, 0.0359 _ () 0.0364 -0.05

Ls 0.0327 0.0317 0.10

Ly 0.0359 0.0364 -0.05

Ls 0.0320 0.0376 -0.56

Ls 0.0370G 0.0377 -0.07

Table-1c
contingency Case Il: Line 3-4 (L3) Outage

Line | Line Fl. by NR Method Line Flow by MFFNN Based Errorin %
No. Ppq pU Algorithm, Pyq pu

L, 0.0396 0.0376 0.20

L, ©0.0324 0.0330 -0.06

Ly " 0 0.0368 0.0374 -0.06

Ls 0.0396 0.0376 0.20

L 0.0347 0.0345 0.02

L, 0.0320 0.0300 0.20
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Table-2a

725

Line Flow (Q) Results from NR Contingency Evaluation Method and MFFN!! Based
Algorithm for Load Level of 0.6pu
Base Case: All Lines in service

Line Reactive Line Flow by Reactive Line Flow by MFFNN ‘ ~rror in %
No. NR Method, Qpq pu Based Algorithm, Qpq pu 7
L 0.0287 0.0286 B 0.01
L, 0.0271 0.0315 -0.44
Ls 0.0313 0.0309 0.04
Ly 0.0286 0.0284 0.02
Ls 0.0339 0.0328 0.11
Ls 0.0271 0.0315 . -0.44
L, 0.0312 0.0297.// | 0.15
Table-2b
Contingency Case I: Ling = (L7) Outage
Line Reactive Line Flow by Reactive ! _2e Flow by MFFNN Error in %
No. NR Method, Qpq pu Besed Algorithm, Qpq pu
L, 0.0351 0.0318 0.33
L. 0.0342 e 0.0301 0.41
Ls 0.0331 0.0328 0.03
La 0.0320 o 0.0376 -0.56
Ls 0.0351 0.0318 0.33
L 0.0291 0.0301 -0.10
Table-2c
C.ontingency Case Il: Line 3-4 (L3) Outage
Line | Reactive Line low by Reactive Line Flow by MFFNN Error in %
No. NR Mett. 2 Q,q pu Based Algorithm, Qpq pu
L, 1293 0.0314 -0.21
L, 00306 0.0342 -0.36
Ly 0.0302 0.0297 0.05
Ls 0.0317 0.0311 0.06
Le 0.0287 0.0286 0.01
L, 0.0349 0.0306 0.43
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Table-3a

726

Bus Voltage Results from NR Contingency Evaluation Method and MFFNN Bazed
Algorithm for Load Level of 0.6pu
Base Case: All Lines in service

Bus No. Bus Voltage by Bus Voltage by MFFNN Eerror in %
P NR Method, V, pu Based Algorithm, V, pu
2 1.1039 1.1238 -1.99
3 1.0829 1.0701 1.28
4 1.0860 1.0407 4.53
5 1.0421 1.0822 401
6 1.0220 1.0000 2.20
Table-3b
Contingency Case I: Line 2-5 (L7) Cutay.
Bus No. Bus Voltage by Bus Voltage by /-"=FNN Errorin %
P NR Method, V, pu Based Algorit*m, V;, pu
2 1.0420 1.0220 0.20
3 1.0780 14120 -3.40
4 1.0418 »l.oe8 -4.20
5 1.0284 £.J708 -4.24
6 1.1063 1.1088 -0.25
Tarie:3c
Contingency Case “- ine 3-4 (L3) Outage
Bus No. Bus Voltage by Bus Voltage by MFFNN Error in %
P NR Method, V, pu Based Algorithm, V, pu
2 1.0537 1.0091 4.46
3 1.0418 1.0838 -4.20
4 1.0114 1.0235 -1.21
5 1.0506 1.0972 -4.66
6 10406 1.0800 -3.94

7.0 Conclusion
The designed ANN maodei has been applied to predict the line-flows and bus voltages under
changing operati 2 Jonustion of the power system. Once the ANN is trained, it predicts quick
results for unknown .>4d patterns. The computation of line-flows by load flow analysis takes
long time, as it .ould be run for any change in load/generation. On the other hand, by the
proposed methad, oice the training of the ANN is successfully completed, the prediction of
the line-flows aj.d bus voltages is almost instantaneous. This can be used for real time
application. .2 outcome of this work can be used to examine the performance of a power
system following a contingency and the need for new transmission expansion due to load
growt.: U¢ yeneration expansion. In operation, contingency analysis assist engineers to
operate @he power system at a secure operating point where the equipment are loaded within
their safe {iimits and power is delivered to customers with acceptable quality standards.
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