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 Abstract:  
A normalized function f analytic in the open unit disc around the origin  and nonvanishing 
outside the origin can be expressed in the form  z/g(z) where g(z) has Taylor coefficients bn’s. 
Coefficient   conditions in terms of bn’s  are derived for functions in the  classes Sp( ),  Sp 
and UCV   of univalent analytic functions. 
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 Introduction:      Let A1 be the class of   functions  f  analytic in U = { zC: z<1}, and  
normalized by f(0)=0,  f  (0)=1 where C is the set of complex numbers. An  f  in A1   with  
f(z)0 in the punctured disc  U\{0}, may be expressed as g(z)z=ψ(g)=f(z) /    in U,  

where 


1
1

=n

n
n zb+=g(z)  in U. We call bn’s , the inverse coefficients  of  f.  

                 
            Mitrinovic [1], Reade et.al [2] ,Silverman and Silvia[5] and Srinivas[6,7] studied  
these coefficients bn’s. 
 
            Mitrinovic [1] obtained estimates for the radius of univalence of certain rational  
 
functions.  In   particular, he found sufficient conditions for functions of the form 
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bn  0 , to be univalent in the unit disk  U.  

A function  
 

          n

=n
n za+z=f(z) 



2

 

 
 in   A1  is said to be in the class CV if and only if f(z) is one to one and f(U) is convex. A 
function f (z) is said to be uniformly convex in U if and only if  f(z) is in CV and has the  
property that for every circular arc   contained in U , with centre   also in U , the arc f( ) is 
convex. The class of uniformly convex functions is denoted by UCV. We have 
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         Ronning [3] introduced a new class of starlike functions related to UCV defined as                     
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 We have that for a function f(z) in A1 ,  
 
                                    pSzfzUCVzf  )()(   
 
 Further, Ronning generalized the class Sp by introducing a parameter 11,    and 
defined that   for a function f(z) in A1 ,  
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 We have    Sp(0)  = Sp   . 
 
Ronning [3] derived necessary and sufficient conditions for a binomial to be in Sp or UCV: 
 
Theorem A.  f(z) = z+anzn is in Sp if and only if )12/(1  nan . 
 
TheoeremB. f(z) = z+anzn is in UCV  if and only if ))12(/(1  nnan . 
        In this paper we derive some sufficient conditions on bn’s for f to be in class Sp( ) in 
Section1. In Section 2 , we find some necessary and sufficient conditions for some binomials 
to be in Sp or UCV.  
 
                                                         Section-1 
 
First we determine a sufficient condition on f in terms of bn’s for f to be  Sp( ). 
 

Theorem 1. Let f(z)= z/( 
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Then f (z) is in the class Sp( ). 
 

Proof: For f(z)= z/g(z) where ,,1)(
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The given inequality implies that 
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This implies (2)  because  
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Thus (1) follows. Hence f  Sp( ). 
 

Corollary: Let f(z)= z/( 
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Then f (z) is in the class Sp. 
 
                                                             Section-2 
 
         Next we determine a necessary and sufficient condition on a particular form of   f in 
terms of bn’s for f to be  in Sp. 
 

Theorem2: f(z) = z+anzn = z/( 
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Now the Theorem2 follows from the above Theorem A 
 
     Next we determine a necessary and sufficient condition on a particular form of  f in terms 
of bn’s for f to be in UCV. 
 

 Theorem3: f(z) = z+anzn = z/( 
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m zb ) is in UCV  if and only if               
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mn nnb )]12(/[1)1(   and mnkforbk )1(0   for .Nm  

 
Proof: Similar to that of Theorem2 via Theorem B 
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