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Abstract:

A normalized function f analytic in the open unit disc.around the origin and nonvanishing
outside the origin can be expressed in the form z/g(z) where g(z) has Taylor coefficients b,’s.
Coefficient conditions in terms of b,’s are derived for functions in the classes Sy ), Sp
and UCV of univalent analytic functions.
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Introduction:  Let A; be the‘class of functions f analytic in U = { zeC: | z| <1}, and
normalized by f(0)=0, f '(0)=1 where C is the set of complex numbers. An f in A; with
f(z)=0 in the punctured disc»U\{0}, may be expressed as f(z)=w(g)=z/9(z) inU,

where g(z) = 1+anzn in U. We call b,’s, the inverse coefficients of f.

n=1

Mitrinovic [1], Reade et.al [2] ,Silverman and Silvia[5] and Srinivas[6,7] studied
these coefficients b,’s.

Mitrinovic [1] obtained estimates for the radius of univalence of certain rational

functions. 'In" particular, he found sufficient conditions for functions of the form

z
1+bz+b,z? +..+b, 2"’
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b, # 0, to be univalent in the unit disk U.

A function
fz)=z+> a,z"
n=2

in A is said to be in the class CV if and only if f(z) is one to one and f(U) isconvex. A
function f (z) is said to be uniformly convex in U if and only if f(z) is in'CV and has the
property that for every circular arc ¥ contained in U , with centre £ alsoin U , the arc f(y ) is

convex. The class of uniformly convex functions is denoted by UCV. We have

f eUCV < Re{1+ il "(Z)} > | "(Z)|, zeU.
') || f'(2)|

Ronning [3] introduced a new class of starlike functions related to UCV defined as

& w—l‘< Re{w},z cU.
f(2) f(2)

We have that for a function f(z) in Ay,

feS

f(z) eUCV < zf'(2) €S,

Further, Ronning generalized the class Sy by introducing a parameter a,-1< o <1 and
defined that for a function f(z) in A; ,

w— < Re m—a zelU
f(2) f(2) ’ '

Ronning [3] derived necessary and sufficient conditions for a binomial to be in S, or UCV:

feS, (a)=

We have Sp(0) =S, .

Theorem A. f(z) = z+asz"is'in Sy if and only if |a,|<1/(2n-1).

TheoeremB. f(z) =z+a,Z" is in UCV if and only if |a | <1/(n(2n-1)).

In this paper we derive some sufficient conditions on b,’s for f to be in class Sy(a ) in
Sectionl. In Section 2 , we find some necessary and sufficient conditions for some binomials
to be in Sy, or UCV:

Section-1

First we determine a sufficient condition on f in terms of b,’s for fto be Sy(a ).

Theorem 1. Let f(z)=z/(1+ anz“ ) €A1 with by’s satisfying
n=1
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00

Sen+@-a)lp,|<1-c.

n=1

Then f (z) is in the class Sp(« ).

Proof: For f(z)= z/g(z) where g(z) =1+anzn ,ZeU, we have

n=1

4 (2) —JF Re{zf (2) _a} & Re{l—M—a}> 0@ 1)
f(2) f(2) 9(2) 9(2)
o 10 ref B0 900
0) | | 9(2)]
= Re{—Zg'(z)} <l-o- _zg'(z)
9(2) 9(2)
Z.o:nbnzn Z.o:nbnzn
N Y S o g .= S @
1+> b,2" 1+> b,z"
n=1 n=1
The given inequality implies that
2> np,| < @=a)@->_|b,])
n=1 n=1
> rib,
=2 <1lg
1_Z;|bn|
Z.o:nbnzn
S S Jp
1+>'b,z"
n=1
Z.o:nbnzn Z.o:nbnzn
= n:lOo <1—OC— n:lOo
1+> b,z" 1+> b,z"
n=1 n=1

This implies(2) because
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00

inbnzn > nb,z"
n=1

Re = <

1+§:bnzn 1+§:bnzn |
n=1 n=1

Thus (1) follows. Hence fe Sp(a ).

Corollary: Let f(z)= Z/(1+ibnzn ) €Az with b,’s satisfying
n=1

i[Zn +1]o,|<1.

n=1
Then f (z) is in the class Sp.
Section-2

Next we determine a necessary and sufficient condition.on a particular form of fin
terms of b,’s for f to be in Sp.

Theorem2: f(z) = z+anz" = z/(lJermzm )isin §p ifand only if b, . I<1/(2n-1)",
m=1
and b, =0fork #(n—-1)m forme.N.
Proof: We have
f(2)= 2/g(z) where g(z) =14 b,z",zeU.
m=1
For
f(z) = z+anz"
we have
f(z)=i=z+anz”,z eU.
9(2)
Hence
z 1 c n-1 : c ) (n-1)m
7)= = =1+ ) |-a,z =1+ ) (-a,) z
9@ z+a,2" d4a "t mZ;( ) ;( )

& by ym = (—a5)% b, =0 fork = (n—1)m.
Now the Theorem?2 follows from the above Theorem A

Next we determine a necessary and sufficient condition on a particular form of f in terms
of by’s for f to be'in UCV.

Theorem3:f(z) = z+anz" = z/(lJermzm ) isin UCV if and only if

m=1

<1/[n(2n-1)]" and b, =0 fork = (n—1)m for m e N.

b(n—l)m

Proof: Similar to that of Theorem?2 via Theorem B
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