PROPAGATION OF SH WAVES IN TWO MICROMORPHIC HALF SPACES IN CONTACT
A. Chandulal, K. Somaiah and K. Sambaiah. E-Mail.chandulal2009@gmail.com
Department of Mathematics, Kakatiya University, Warangal, A.P., India.

Abstract: In this paper an attempt is made to study the propagation of SH waves in two micromorphic half spaces in contact. The period equation is obtained. It is observed that three additional waves are found which are not encountered in classical elasticity.

Key words: SH waves-Micromorphic half spaces

INTRODUCTION

The classical theory of elasticity neglects the effect of the distribution of couples over the surface across which different parts of a continuum interact mechanically with each other. The micropolar theory developed by Eringen [1,2] and Eringen [3] is based on the condition that micromotion of the medium is restricted to micro-rotation only. Eringen [4] contributed a theory called theory of micromorphic materials wherein micromotion consists of micro-translation and micro-rotation. To analyse the mechanical behavior of micromorphic solid it requires 12 second order partial differential equations in 12 unknowns involving 18 elastic constants. Koh [5] developed simpler theory by extending the concept of coincidence of principal directions of stress and strain in classical elasticity to the micro-elastic solid. Imposing a particular form of micro-isotropy Koh [5] obtained special constraints on the elastic moduli, there by reducing number 18 to 10 in the special case. In a subsequent formulation of the problem with respect to principal direction of the micro-strain one needs to consider only nine equations in nine unknowns.
The theory developed by Koh is known as micro-isotropic, micro-elastic theory. Assuming the micro-motion is restricted to micro-rotation and stress moment tensor has a particular form of anti-symmetry one obtain the equations of micropolar elasticity.

The propagation of plane waves in two semi-infinite media separated by a plane interface was discussed by Sommerfield, Jeffery, Muskant and others have discussed wave propagation in case where distance of the point source from the plane is finite.

Wave propagation in a semi-infinite micropolar isotropic elastic solid lying over another micropolar elastic solid is studied by M. Parameshwar Rao and B. Kesava Rao. Reflection and refraction of SH waves at a corrugated interface between two-dimensional transversely isotropic half spaces is studied by S.K. Tomar and S.L. Saini.

In this paper we discuss the SH waves in two micromorphic elastic half spaces in contact. This problem is of geophysical interest, particularly in investigations concerned with earthquakes and other phenomena in seismology. Since the propagation characteristics of earth vary with depth, the first approximation to the actual problem can be achieved by regarding earth as formed of several layers in each of which physical properties are constant. Considering time harmonic waves, we observed that three additional waves are found. These three waves are dispersive and depends only on micromorphic constants that is other than \(\lambda \) and \(\mu \).

BASIC EUQATIONS

The basic equations for a micro-isotropic, micro elastic solids are obtained by Koh, Parameshwaran and Koh are given as follows.

The constitutive equations are:

\[
t_{(km)} = A_1 e_{pp} \delta_{km} + 2A_2 e_{km}
\]

\[
t_{[km]} = \sigma_{[km]} = 2A_3 e_{pkm} (\tau_p - \theta_p)
\]

\[
\sigma_{(km)} = -A_4 \phi_{pp} \delta_{km} - 2A_5 \phi_{km}
\]

\[
t_{k(mn)} = B_1 \phi_{pp,k} \delta_{km} + 2B_2 \phi_{pm,k}
\]

\[
m_{kl} = -2(B_1 \phi_{ik,k} + B_3 \phi_{kl,k} + B_5 \phi_{pp,k} \delta_{kl})
\]

where

\[
A_1 = \lambda + \sigma_1, \quad A_2 = \mu + \sigma_2 \quad B_1 = \tau_3, \quad 2B_2 = \tau_7 + \tau_{10}
\]

\[
A_3 = \sigma_5, \quad A_4 = -\sigma_1 \quad B_3 = 2\tau_4 + 2\tau_9 + \tau_7 - \tau_{10}, \quad B = -2\tau_4
\]

\[
A_5 = -\sigma_2 \quad B_5 = -2\tau_9
\]
subject to the conditions

\begin{align}
3A_1 + 2A_2 &> 0, \quad A_2 > 0, \quad A_3 > 0 \\
3A_4 + 2A_5 &> 0 \quad A_5 > 0 \nonumber \\
3B_1 + 2B_2 &> 0 \quad B_2 > 0 \quad B_3 > 0 \nonumber \\
-B_3 &< B_4 < B_5. \quad B_3 + B_4 + B_5 > 0
\end{align}

(7)

The macro-displacement in the micro-elastic continuum is denoted by u_k and the micro-deformation by ϕ_{mn}. For the linear theory, we have the macro-strain $e_{km} = u_{(k,m)}$, the macro-rotation vector $r_k = \frac{1}{2} \varepsilon_{kmn} u_{m,n}$, the micro-strain $\phi_{(mn)}$ and micro-rotation vector $\phi_p = \frac{1}{2} \varepsilon_{kmn} \phi_{km}$. The stress measures are the asymmetric stress (macro-stress) t_{mn}, the relative stress (micro-stress) σ_{km} and the stress moment t_{kmm}. Also the couple stress tensor $m_{kp} = \varepsilon_{kmn} t_{kmp}$.

We indicate the symmetric part with $()$ while the anti-symmetric part with $[]$. λ, μ are classical material constants and $\sigma_1, \sigma_2, \sigma_3, \tau_3, \tau_4, \tau_7, \tau_9$ and τ_{10} are micro-isotropic and micro-elastic material constants. Further ε_{kmn} is the permutation symbol.

The equations of motion with the body forces and body couple are given by

\begin{align}
(A_1 + A_2 - A_3)u_{p,pm} + (A_2 + A_3)u_{m,pp} + 2A_3 \varepsilon_{kmn} \phi_{p,k} + \rho f_{im} = \rho \frac{\partial^2 u_m}{\partial t^2}
\end{align}

(8)

\begin{align}
B_1 \phi_{pp,ik} \delta_{ij} + 2B_2 \phi_{ij,mm} - A_2 \phi_{pp,ij} - 2A_3 \phi_{ij} + \rho f_{(ij)} = \frac{1}{2} \rho j \frac{\partial^2 \phi_{(ij)}}{\partial t^2}

\end{align}

(9)

\begin{align}
2B_3 \phi_{p,mm} + 2(B_1 + B_2) \phi_{m,mp} - 4A_1 (r_p + \phi_p) - \rho f_p = \rho j \frac{\partial^2 \phi_p}{\partial t^2}

\end{align}

(10)

where comma denotes partial derivative with respect to space variable (x_k) and repeated indices indicate summation.
Formulation and solution of the problem

Consider two micromorphic half-spaces with different mechanical properties perfectly welded along the x-axis (Fig. 1).

Since we are considering time harmonic waves, the macro-displacement, micro-rotation and micro-displacement are functions of x, y, t for both the media and are given by

\begin{align*}
\mathbf{u}^{(i)} &= \mathbf{v}^{(i)} = 0, \quad \mathbf{w}^{(i)} = \mathbf{w}^{(i)}(x, y, t), \\
\phi^{(i)} &= \phi^{(i)}(x, y, t), \quad \phi^{(i)} = \phi^{(i)}(x, y, t), \phi^{(i)} = 0, \\
\phi^{(i)} &= \phi^{(i)}(x, y, t), \quad \phi^{(i)} = \phi^{(i)}(x, y, t), \\
\phi^{(i)} &= \phi^{(i)}(x, y, t), \quad \phi^{(i)} = \phi^{(i)} = \phi^{(i)} = 0
\end{align*}

for y < 0 and

\begin{align*}
\mathbf{u}^{(2)} &= \mathbf{v}^{(2)} = 0, \quad \mathbf{w}^{(2)} = \mathbf{w}^{(2)}(x, y, t), \\
\phi^{(2)} &= \phi^{(2)}(x, y, t), \quad \phi^{(2)} = \phi^{(2)}(x, y, t), \quad \phi^{(2)} = 0, \\
\phi^{(2)} &= \phi^{(2)}(x, y, t), \quad \phi^{(2)} = \phi^{(2)}(x, y, t), \\
\phi^{(2)} &= \phi^{(2)}(x, y, t), \quad \phi^{(2)} = \phi^{(2)} = \phi^{(2)} = 0
\end{align*}

(12)
The equations (13) to (15) are coupled equations and coupled in terms of i, w, ϕ and (i). In view of (16) the equation (17) reduces to

\[
\left(A_{2}^{(i)} + A_{3}^{(i)} \right) \left(\frac{\partial^2 w^{(i)}}{\partial x^2} + \frac{\partial^2 w^{(i)}}{\partial y^2} \right) + 2A_{3}^{(i)} \left(\frac{\partial \phi_1^{(i)}}{\partial y} - \frac{\partial \phi_2^{(i)}}{\partial x} \right) = \rho^{(i)} \frac{\partial^2 w^{(i)}}{\partial t^2} \quad (13)
\]

\[
2B_{3}^{(i)} \left[\frac{\partial^2 \phi_1^{(i)}}{\partial x^2} + \frac{\partial^2 \phi_1^{(i)}}{\partial y^2} \right] + 2 \left(B_{4}^{(i)} + B_{5}^{(i)} \right) \left[\frac{\partial^2 \phi_1^{(i)}}{\partial x^2} + \frac{\partial^2 \phi_2^{(i)}}{\partial x \partial y} \right]
= \rho^{(i)} j^{(i)} \frac{\partial^2 \phi_1^{(i)}}{\partial t^2} \quad (14)
\]

\[
- A_{1}^{(i)} \left[\frac{1}{2} \frac{\partial w^{(i)}}{\partial y} + \phi^{(i)} \right] = \rho^{(i)} j^{(i)} \frac{\partial^2 \phi_2^{(i)}}{\partial t^2} \quad (15)
\]

\[
B_{1}^{(i)} \left[\frac{\partial^2 \phi_3^{(i)}}{\partial x^2} + \frac{\partial^2 \phi_3^{(i)}}{\partial y^2} \right] - A_{4}^{(i)} \phi_{33}^{(i)} = 0 \quad (16)
\]

\[
B_{1}^{(i)} \left[\frac{\partial^2 \phi_3^{(i)}}{\partial x^2} + \frac{\partial^2 \phi_3^{(i)}}{\partial y^2} \right] + 2B_{2}^{(i)} \left[\frac{\partial^2 \phi_3^{(i)}}{\partial x^2} + \frac{\partial^2 \phi_3^{(i)}}{\partial y^2} \right] - A_{4}^{(i)} \phi_{33}^{(i)} - 2A_{5} \phi_{33}^{(i)}
= \frac{1}{2} \rho^{(i)} j^{(i)} \frac{\partial^2 \phi_{33}^{(i)}}{\partial t^2} \quad (17)
\]

\[
2B_{2}^{(i)} \left[\frac{\partial^2 \phi_{32}^{(i)}}{\partial x^2} + \frac{\partial^2 \phi_{32}^{(i)}}{\partial y^2} \right] - 2A_{5} \phi_{32}^{(i)} = \frac{1}{2} \rho^{(i)} j^{(i)} \frac{\partial^2 \phi_{32}^{(i)}}{\partial t^2} \quad (18)
\]

\[
2A_{2}^{(i)} \left[\frac{\partial^2 \phi_{31}^{(i)}}{\partial x^2} + \frac{\partial^2 \phi_{31}^{(i)}}{\partial y^2} \right] - 2A_{5} \phi_{31}^{(i)} = \frac{1}{2} \rho^{(i)} j^{(i)} \frac{\partial^2 \phi_{31}^{(i)}}{\partial t^2} \quad (19)
\]

In view of (16) the equation (17) reduces to

\[
2B_{2} \left[\frac{\partial^2 \phi_{32}^{(i)}}{\partial x^2} + \frac{\partial^2 \phi_{32}^{(i)}}{\partial y^2} \right] - 2A_{5} \phi_{32}^{(i)} = \frac{1}{2} \rho^{(i)} j^{(i)} \frac{\partial^2 \phi_{32}^{(i)}}{\partial t^2} \quad (20)
\]

where $i = 1, 2$. The field equations for the medium I corresponds to $i = 1$ and for the medium II corresponds to $i = 2$.

The equations (13) to (15) are coupled equations and coupled in terms of $w^{(i)}$, $\phi_1^{(i)}$ and $\phi_2^{(i)}$.

As a trial solution, let us assume...
\[w^{(i)} = A^{(i)} \exp(m^{(i)}y) \exp[iq(x-ct)] \]
\[\phi_1^{(i)} = B^{(i)} \exp(m^{(i)}y) \exp[iq(x-ct)] \]
\[\phi_2^{(i)} = C^{(i)} \exp(m^{(i)}y) \exp[iq(x-ct)] \]
\[(21) \]

where \(A^{(i)}, B^{(i)}, C^{(i)} \) are constants, \(q \) is the wave number and \(c \) is phase velocity.

Substituting equations (21) in the equations (13) to (15) we get
\[
\begin{align*}
\left[(A_2^{(i)} + A_3^{(i)}) (m^{(i)} - q^2) + \rho^{(i)} c^2 q^2 \right] A^{(i)} + 2A_3^{(i)} m^{(i)} B^{(i)} - 2A_3^{(i)} i q c &= 0 \\
- 2A_4^{(i)} m^{(i)} A^{(i)} + [2B_3^{(i)} (m^{(i)} - q^2) - 2(B_4^{(i)} + B_5^{(i)}) q^2 - 4A_3^{(i)} + \rho^{(i)} j^{(i)} q^2 c^2] B^{(i)} + [2(B_4^{(i)} + B_5^{(i)}) m^{(i)} i q c] C^{(i)} &= 0 \\
(2A_3^{(i)} i q) A^{(i)} + [2(B_4^{(i)} + B_5^{(i)}) i q m^{(i)}] B^{(i)} + [2B_3^{(i)} (m^{(i)} - q^2) + 2(B_4^{(i)} + B_5^{(i)}) m^{(i)} - 4A_3^{(i)} + \rho^{(i)} j^{(i)} q^2 c^2] C^{(i)} &= 0
\end{align*}
\]
\[(22) \]
\[(23) \]
\[(24) \]

For \(i=1 \) we have a system of homogenous equations in \(A^{(1)}, B^{(1)} \) and \(C^{(1)} \). Similarly for \(i=2 \) we have another system of homogenous equations in \(A^{(2)}, B^{(2)} \) and \(C^{(2)} \). For the existence of non – trivial solution of the system of equation is \(A^{(1)}, B^{(1)} \) and \(C^{(1)} \) is the determinant of the coefficient matrix should be zero. (i.e.) (25).

\[|a| = 0 \]
\[(25) \]

where
\[a_{11} = (A_2^{(1)} + A_3^{(1)}) (m^{(1)} - q^2) + \rho^{(1)} c^2 q^2 \]
\[a_{12} = 2A_3^{(1)} m^{(1)} \]
\[a_{13} = -2A_3^{(1)} i q \]
\[a_{21} = -2A_3^{(1)} m^{(1)} \]
\[a_{22} = 2B_3^{(1)} (m^{(1)} - q^2) - 2(B_4^{(1)} + B_5^{(1)}) q^2 - 4A_3^{(1)} + \rho^{(1)} j^{(1)} C^2 q^2 \]
\[a_{23} = 2(B_4^{(1)} + B_5^{(1)}) m^{(1)} i q c \]
\[a_{31} = 2A_3^{(1)} i q \]
\[a_{32} = 2(B_4^{(1)} + B_5^{(1)}) i q m^{(1)} \]
\[a_{33} = 2B_3^{(1)} (m^{(1)} - q^2) + 2(B_4^{(1)} + B_5^{(1)}) m^{(1)} - 4A_3^{(1)} + \rho^{(1)} j^{(1)} q^2 c^2 \]

Expanding the determinant we get
\[j^{(i)}(\bar{\theta}^{(i)} + \bar{\delta}^{(i)}) (m^{(i)} - q^2) + j^{(i)} q^{(2)} \xi^{(i)} - 2 \in^{(i)} \]
\[\left[\bar{\theta}^{(i)} j^{(i)} (m^{(i)} - q^2) - 2 \in^{(i)} + \rho^{(i)} j^{(i)} \xi^{(i)} q^2 \right]. \]
\[(26) \]
\[(27) \]

where
\[C_1^{(l)} = \frac{A_1^{(l)} + 2A_2^{(l)}}{\rho^{(l)}}; \quad C_2^{(l)} = \frac{A_1^{(l)} + A_2^{(l)} - A_3^{(l)}}{\rho^{(l)}} \]
\[C_3^{(l)} = \frac{2A_1^{(l)}}{\rho^{(l)}}, \quad C_4^{(l)} = \frac{2B_3^{(l)}}{\rho^{(l)}j^{(l)}}, \quad C_5^{(l)} = \frac{2(B_4^{(l)} + B_5^{(l)})}{\rho^{(l)}j^{(l)}} \]
\[C_6^{(l)} = \frac{A_2^{(l)}}{\rho^{(l)}}; \quad \xi^{(l)} = \frac{c^2}{C_6^{(l)}}; \quad \varepsilon^{(l)} = \frac{C_3^{(l)}}{C_6^{(l)}}; \quad \theta^{(l)} = \frac{C_4^{(l)}}{C_6^{(l)}}; \quad \delta^{(l)} = \frac{C_5^{(l)}}{C_6^{(l)}} \] (28)

Neglecting \(\varepsilon^{(l)} \) term in (27) we obtain a set of approximate roots for \(m^{(l)} \) and we suppose these roots to be \(b_1^2, b_2^2 \) and \(b_3^2 \). Thus,

\[b_1^2 = \frac{2 \varepsilon^{(l)}}{\vartheta^{(l)} + \lambda^{(l)}} + \left(\frac{1 - \xi^{(l)}}{\vartheta^{(l)} + \delta^{(l)}} \right) \theta^2 \] (29)

\[b_2^2 = \left[1 - \xi^{(l)} \left(1 - \frac{\varepsilon^{(l)}}{2} \right) \right] q^2 \] (30)

\[b_3^2 = \left[\frac{2 \varepsilon^{(l)}}{\vartheta^{(l)} + \delta^{(l)}} + \left(\frac{1 - \xi^{(l)}}{\delta^{(l)}} \right) \right] q^2 \] (31)

We assume that \(b_1, b_2 \) and \(b_3 \) are positive. The general solutions for displacements and rotation functions in the lower half space \(y < 0 \) are of the form

\[w^{(l)} = M^{(l)}L_2 \exp(-b_2y) \exp[iq(x - ct)] \] (32)

\[\phi_1^{(l)} = \sum_{k=1}^{3} \lambda_k L_k \exp(-b_2y) \exp[iq(x - ct)] \] (33)

\[\phi_2^{(l)} = \sum_{k=1}^{3} L_k \exp(-b_2y) \exp[iq(x - ct)] \] (34)

where \(L_1, L_2 \) and \(L_3 \) are constants

\[M^{(l)} = \frac{1}{i} \left(C_4^{(l)} + C_5^{(l)} \left(b_2^2 - q^2 \right) - 2c^2 + \rho^{(l)}j^{(l)}q^2c^2 \right) \] (35)

and \(\lambda_1 = \frac{q}{ib_1}, \lambda_2 = \frac{q}{ib_2}, \lambda_3 = \frac{b_2}{iq} \) (36) The system of equations in \(A^{(2)}, B^{(2)} \) and \(C^{(2)} \) are similar to the set equations in \(A^{(1)}, B^{(1)} \) and...
C^{(1)} except change in supersuffix. Hence the solutions \(w^{(2)}, \phi^{(2)}_1, \phi^{(2)}_2 \) for the upper half space \((y>0)\) are

\[
\begin{align*}
w^{(2)} &= M^{(2)} L_5 \exp(b_3 y) \exp[\nu(x-ct)] \\
\phi^{(2)}_1 &= \sum_{k=4}^{6} \lambda_k L_k \exp(b_k y) \exp[\nu(x-ct)] \\
\phi^{(2)}_2 &= \sum_{k=4}^{6} L_k \exp(b_k y) \exp[\nu(x-ct)]
\end{align*}
\]

where \(L_4, L_5 \) and \(L_6 \) are constants, \(b_4^2, b_5^2, b_6^2 \) are roots of the determinates of the coefficients of the equations in \(A^{(2)}, B^{(2)}, C^{(2)} \) by neglecting \(\epsilon^{(2)}_y \),

\[
M_2 = \frac{j^{(2)} C_4^{(2)} + C_5^{(2)} (b_2^2 - q^2) - 2C^2 + \rho^{(2)} j^{(2)} q^2 c^2}{-C_5^{(2)} \nu}
\]

\[
\lambda_4 = -\frac{q}{ib_4}, \quad \lambda_5 = -\frac{b_5}{\nu}, \quad \lambda_6 = -\frac{b_6}{\nu}
\]

and \(b_4^2, b_5^2, b_6^2 \) are respectively equal to the right hand sides of the equations (29)-(31) replacing the super suffix 1 by 2. On the stress free boundary surface the required boundary conditions are

\[
\begin{align*}
w^{(1)} &= w^{(2)} \\
\phi^{(1)} &= \phi^{(2)} \\
t^{(2)}_{23} &= \phi^{(2)}, \quad m^{(2)}_{21} = m^{(2)}
\end{align*}
\]

These boundary conditions involves the macro-displacement and micro-rotations.

Substituting equations (32) to (34) and (37) to (39) in equations (42) we get

\[
\begin{align*}
M^{(1)} L_2 - M^{(2)} L_3 &= 0 \\
\lambda_1 L_{14} + \lambda_2 L_2 + \lambda_3 L_3 - \lambda_4 L_4 - \lambda_5 L_5 - \lambda_6 L_6 &= 0 \\
L_1 + L_2 + L_3 - L_4 - L_5 - L_6 &= 0 \\
A_2^{(1)} b_2 m^{(1)} L_2 + A_2^{(2)} b_1 m^{(2)} L_5 &= 0 \\
\begin{bmatrix} B_3^{(1)} \nu - B_4^{(1)} b_1 \nu \end{bmatrix} L_2 + [B_3^{(1)} \nu - B_4^{(2)} \lambda_4 b_4] L_4 \\
+ [B_3^{(1)} \nu - B_4^{(2)} \lambda_4 b_4] L_5 - [B_3^{(1)} \nu - B_4^{(2)} \lambda_4 b_4] L_4 \\
- [B_3^{(1)} \nu - B_4^{(2)} \lambda_4 b_4] L_5 - [B_3^{(1)} \nu - B_4^{(2)} \lambda_4 b_4] L_6 &= 0 \\
[B_3^{(1)} + B_4^{(1)} + B_5^{(1)} b_1 - B_5^{(1)} \lambda_4 b_4] L_2 + [B_3^{(1)} + B_4^{(1)} + B_5^{(1)} b_2 - B_5^{(1)} \lambda_4 b_4] L_2 \\
+ [B_3^{(1)} + B_4^{(1)} + B_5^{(1)} b_3 - B_5^{(1)} \lambda_4 b_4] L_3 + [B_3^{(1)} + B_4^{(1)} + B_5^{(1)} b_4 - B_5^{(1)} \lambda_4 b_4] L_4
\end{align*}
\]
\[
+ \left[(B_3^{(2)} + B_4^{(2)} + B_5^{(2)}) b_5 + B_5^{(2)} \lambda_5 i q \right] L_5 + \left[(B_3^{(2)} + B_4^{(2)} + B_5^{(2)}) b_6 + B_5^{(2)} \lambda_6 i q \right] L_6 = 0
\]

(48)

A non-vanishing solution of the above system of equations for \(L_1, L_2, L_3, L_4, L_5 \) and \(L_6 \) exists if and only if the determinant of the coefficients is zero i.e.,

\[
\left| b_{ij} \right| = 0
\]

where

\[
\begin{align*}
b_{12} &= m^{(1)} & b_1 &= 0 & b_{13} &= 0 & b_{14} &= 0 \\
b_{15} &= -m^{(2)} & b_{16} &= 0 \\
b_{21} &= \lambda_1, & b_{22} &= \lambda_2, & b_{23} &= \lambda_3 \\
b_{24} &= -\lambda_4; & b_{25} &= -\lambda_5; & b_{26} &= -\lambda_6 \\
b_{31} &= 1; & b_{32} &= 1; & b_{33} &= 1 \\
b_{34} &= -1; & b_{35} &= -1; & b_{36} &= -1 \\
b_{41} &= 0; & b_{42} &= A^{(1)}_2 b_1 m^{(1)}; & b_{43} &= 0 \\
b_{44} &= 0; & b_{45} &= A^{(2)}_2 b_2 m^{(2)}; & b_{46} &= 0 \\
b_{51} &= (B_3^{(1)} i q - B_4^{(1)} \lambda_1 b_1) & b_{52} &= (B_3^{(2)} i q - B_4^{(2)} \lambda_2 b_2) \\
b_{53} &= (B_3^{(1)} i q - B_4^{(1)} \lambda_3 b_3) & b_{54} &= -\left[B_3^{(2)} i q + B_4^{(2)} b_4 \lambda_4 \right] & b_{55} &= -\left[B_3^{(2)} i q + B_4^{(2)} b_5 \lambda_6 \right] \\
b_{56} &= -\left[B_3^{(2)} i q + B_4^{(2)} b_6 \lambda_6 \right] \\
b_{61} &= (B_3^{(1)} + B_4^{(1)} + B_5^{(1)} b_1 - B_5^{(1)} \lambda_1 \lambda_3 i q) & b_{62} &= (B_3^{(1)} + B_4^{(1)} + B_5^{(1)} b_2 - B_5^{(1)} \lambda_2 i q) \\
b_{63} &= (B_3^{(1)} + B_4^{(1)} + B_5^{(1)} b_3 - B_5^{(1)} \lambda_3 i q) \\
b_{64} &= (B_3^{(2)} + B_4^{(2)} + B_5^{(2)} b_4 - B_5^{(2)} \lambda_4 i q) \\
b_{65} &= (B_3^{(2)} + B_4^{(2)} + B_5^{(2)} b_5 - B_5^{(2)} \lambda_5 i q) \\
b_{66} &= (B_3^{(2)} + B_4^{(2)} + B_5^{(2)} b_6 - B_5^{(2)} \lambda_6 i q)
\end{align*}
\]

The determinant (49) can be expressed as two factors, hence each factor is equal to zero. Thus we have,

\[
m^{(1)} m^{(2)} \{ A^{(2)}_2 b_1 + A^{(1)}_2 b_2 \} = 0
\]

(50)

and

\[
\left| c_{ij} \right| = 0 \quad (i, j = 1, 2, 3, 4)
\]

(51)

where

\[
\begin{align*}
c_{11} &= \lambda_1; & c_{12} &= \lambda_2; & c_{13} &= -\lambda_4; & c_{14} &= -\lambda_6 \\
c_{21} &= 1; & c_{22} &= 1; & c_{23} &= -1; & c_{24} &= -1
\end{align*}
\]
\[c_{31} = b_{31}; \quad c_{32} = b_{32}; \quad c_{33} = b_{34}; \quad c_{34} = b_{56} \]
\[c_{41} = b_{61}; \quad c_{42} = b_{62}; \quad c_{43} = b_{64}; \quad c_{44} = b_{66} \]

It is interested to not that the equation (50) gives two additional waves (depends only on micromorphic constant) not encountered in classical elasticity.

As the equation (51) yield an equation in complex form a further discursion on it not initiated.

Now we study the effect of micro-strains in the present problem
We seek the solution of (18) to (20) as

\[\phi_{(31)}^{(i)} = N_i \exp(-\lambda^{(i)}y) \exp[iq(y - ct)] \]
\[\phi_{(32)}^{(i)} = N_i \exp(-\lambda^{(i)}y) \exp[iq(y - ct)] \]
\[\phi_{(33)}^{(i)} = N_i \exp(-\lambda^{(i)}y) \exp[iq(y - ct)] \]

and \[\phi_{(31)}^{(2)} = N_i \exp(-\lambda^{(2)}y) \exp[iq(y - ct)] \]
\[\phi_{(32)}^{(2)} = N_i \exp(-\lambda^{(2)}y) \exp[iq(y - ct)] \]
\[\phi_{(33)}^{(2)} = N_i \exp(-\lambda^{(2)}y) \exp[iq(y - ct)] \]

where \[l^{(i)} = \frac{A_s^{(i)}}{B_2^{(i)}} + \left(1 - \frac{\rho^{(i)}j^{(i)}C^2}{4B_2^{(i)}}\right)q^2 \]
\[l^{(2)} = \frac{A_s^{(2)}}{B_2^{(2)}} + \left(1 - \frac{\rho^{(2)}j^{(2)}C^2}{4B_2^{(2)}}\right)q^2 \]

and \[N_i \quad (i = 1,2,3,4,5,6) \] are constants. The boundary conditions to be satisfied involving the micro-strains are

\[\phi_{31}^{(i)} = \phi_{31}^{(2)} \]
\[\phi_{32}^{(i)} = \phi_{32}^{(2)} \]
\[\phi_{33}^{(i)} = \phi_{33}^{(2)} \]
\[t_{2(32)}^{(i)} = t_{2(32)}^{(2)} \]
\[t_{2(33)}^{(i)} = t_{2(33)}^{(2)} \]

Substituting equations (52), (53) in equation (54) we get the frequency equation.

\[\frac{A_s^{(i)}}{B_2^{(i)}} + \left(1 - \frac{\rho^{(i)}j^{(i)}C^2}{4B_2^{(i)}}\right)q^2 - \frac{A_s^{(2)}}{B_2^{(2)}} + \left(1 - \frac{\rho^{(2)}j^{(2)}C^2}{4B_2^{(2)}}\right)q^2 = 0 \]

This wave also depends only on micro-morphic constants that is other than elastic constants \(\lambda, \mu \) of classical elasticity.
References

