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ABSTRACT 
          A finite element technique is implemented for the free convection effects on MHD 
stokes problem. The numerical values for velocity and temperature under various physical 
situations are obtained and have been analyzed graphically. The numerical results are 
compared with analytical solution and established the validity of finite element technique 
(Ritz method). 
Key words: specific heat, Grashof number, velocity, kinematic Viscosity, Finite element 
method. 
 
 
1. Introduction 
         One of the solutions of the Navier-Stokes equation was first given by Stokes [8] for the 
case of the flow of an incompressible viscous fluid past an infinite horizontal plate moving 
impulsively in its own plane. Hence it is known as Stokes first problem. In recent years, the 
effects of the transverse magnetic field on the flow of an incompressible, viscous, electrically 
conducting fluid, have also been studied extensively by many researchers. The magneto 
hydrodynamic aspect of Stokes problem, on neglecting the induced magnetic field, was first 
presented by Rossow in case of a horizontal plate. How does a transversely applied magnetic 
field affect the flow of an electrically conducting, viscous incompressible fluid past an 
impulsively started vertical plate? This indeed had been the motivation for Soundalgekar [7], 
who had presented an exact of analysis of MHD Stokes problem for the flow of an 
electrically conducting, incompressible, viscous fluid past an impulsively started vertical 
plate, under the action of transversely applied magnetic field.  
    In many industrial applications particularly in the design of space ship, solar energy 
collectors etc, the flow past an infinite vertical plate, started impulsively from rest, plays an 
important role.  
          The flow past a vertical plate moving impulsively in its own plane was studied by 
Soundalgekar. Further, Georgantopolus and Singh [6] have extended this problem in hydro 
magnetic, when the magnetic field is fixed relative to the fluid and the plate, respectively. 
The problem of free convection of an electrically conducting fluid past a plate under the 
influence of a magnetic field is important and useful partly for gaining basic understanding of 
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such flows, and partly for possible application to geophysical, astrophysical, and aero 
dynamical problems. In this chapter the effect of an applied magnetic field on an unsteady 
hydro magnetic flow induced by an infinite vertical moving plate, when the heat flux at the 
plate is constant is studied.  

We have used the finite element method to solve the governing equations when Pr<1 
and Pr>1. In order to assess the accuracy of our method, our numerical solutions for Pr = 1 
have been compared with the analytical solutions. The results have been discussed under 
section 5. 
2. Mathematical Formulation  
         We consider the flow of an electrically conducting, incompressible, viscous fluid past 
an impulsively started infinite vertical plate, moving in its own plate. The x1-axis is taken 
along the vertical plate in the direction of motion and the y1-axis is taken perpendicular to it. 

 
                                   Temperature Profiles T(yB1B) 

        xB1B 
 
        Velocity Profiles  u(yB1B) 
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                 T=0 
                 U=0  
                            Fig.1. Geometry of the problem 
 

It is assumed that the magnetic field lines are perpendicular to the free-stream velocity 
and the magnetic permeability e  is constant throughout the field. Moreover, the induced 
magnetic field, produced by the motion of electrically conducting fluid is assumed to be 
negligible. Hence, the components of electromagnetic induction are 

       ,0
1
xB    )tan(001

tconsBHB ey      and  .0
1
zB             (1) 

As the plate is infinite, all variables in the problem are functions of y1 and t1 only. 
Therefore, the components of velocity are given by  
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If we set the electric field E=0(as no applied or polarization voltage exists) the 
Lorentz force has components 

,1
2

01
uBFx 


      0

1
yF     and        .0

1
zF                          (3) 

Within the framework of these assumptions, the equations which govern the free-
convective flow of an electrically conducting fluid under Boussinesq’s approximation, are 
given by  
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Here, u1 is the velocity of the fluid, T1the temperature of the fluid near the plate, T the 
temperature of the fluid far away from the plate, g the acceleration due to gravity,  the 
coefficient of volume expansion,   the kinematics viscosity,  the scalar electrical 
conductivity, B0 the applied uniform magnetic field, 1 the density of the fluid, k the thermal 
conductivity and t1 is the time.  

In equation (5) the heat due to viscous dissipation is assumed to be negligible. This is 
possible when the velocity is small. The boundary conditions are  

u1 (y1, t1) = U0,  
T1 (y1,  t1) = Tp        at y1 = 0; 

u1 (y1, t1)  0,   

T1 (y1, t1) T        as y1 . 
On introducing the following non-dimensional quantities 
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in equations (4), (5) and (6), we have  
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        With                                 u (0,t) = 1,  
T (0,t) = 1, at y = 0, 

u ( ,t) = 0, 

T ( , t) = 0,     as y.  

 
3. Method of solution  

 

  The Finite Element Technique (Ritz method) is used to solve equations (8) and (9) 
subject to (10).  

Now, we consider equation (9) 
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Using finite element method with crank-nicolson discretization taking h=0.05, k=0.0025 
therefore r=k / h2 =1. 

The element equation for the typical element (e) kj yyy   for the boundary value problem 
may be written as 
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For the linear piecewise approximate solution  
eT = )()()()( tTyNtTyN kkjJ   

The element equation is given by 
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Where prime denotes differentiation w.r.t. to ‘y’ and dot represent differentiation w.r.t. to ‘t’ 

Here '
jN =

h
1  ;  

h
N k

1'  ;    where   h= jk yy  ; 

Simplifying above equation we get 
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h=0.05, k=0.0025 and r=1   the nodal points  nn ty ,  are shown in the figure (2)  
Where   i=1(1)9 and n=1, 2, 3…. 
We solve the system of above equations using Gauss –Seidel method  

 
4. Numerical Solutions and their accuracy  
To get the numerical solutions of temperature T we have taken the aid of the computer by 
developing a code (program) in C language.  It is clear from the figure (2) the computed 
results are very close to analytical values (table 1) hence, the finite element technique is 
valid. 

Now, we consider equation (8) 
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Simplifying above equation we get 
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We solve the system of above equations using Gauss –Seidel method.  
To get the numerical solutions of velocity U   we have taken the aid of the computer by 
developing a code (program) in C language. The numerical and analytical values for different 
t and y are presented in table (2). 

 
5. Discussion: 



International eJournal of Mathematics and Engineering 154 (2012) 1411 – 1422 
T.Arun Kumar , G.Narsimlu, L.Anand Babu And. B.Shivani 

 

 

1416

Numerical solutions with analytical solutions are plotted in figure (3) using table (2). The 
numerical solution very close to analytical solution. Hence, this shows the validity of the 
method. 

Computer program (code in C language)   for different values of prandtl number Pr<1 
and Pr=1 and different values for M and Grashof number Gr and different and fixed time level 
are computed and shown graphically  
 
6. Results and discussion 
            To gain physical insight into the problem, numerical values are obtained and 
displayed in graphical form. The temperature profiles are shown in Figures (4) and (5), 
respectively, for Pr<1 and Pr=1. An increase in Pr leads to a decrease in temperature for fixed 
values of t. Further, as time increases, the temperature also increases when Pr is kept constant.  
 The velocity profiles in presence of magnetic field are displayed in figures (6) to (9). 
All real values for rG  are chosen as they are interesting from the physical point of view. Now 
free convection currents exist because of the Pr(Tp-T) which may be positive, zero or 
negative. As we know the Grashof number rG  is a common dimensionless group that is used 
when analyzing the potential effect of convection introduced by large temperature 
differences. So rG  will assume positive, zero or negative values. From the physical point of 
view, rG < 0 corresponds to an externally heated plate as free convection currents are carried 
towards the plate. rG >0 corresponds to an externally cooled plate and rG =0 corresponds to 
the absence of free convection currents.  
 In figure (6) velocity profiles are shown for Pr<1 in the case when the plate is heated 
by the free convection currents. An increase in Pr leads to an increase in velocity when the 
values of rG , t and M are kept fixed. An increase in M leads to a decrease in the velocity. As 
time is increased, the velocity decreases when the values of rG , M and Pr are kept fixed. 
Greater heating of the plate by the free convection currents also cause an increase in the 
velocity.  
 In figure (8) velocity profiles are shown in the case of the plate being cooled by the 
free convection currents. Here an increase in Pr leads to a decrease in the velocity when the 
values of rG , t, M are kept constant. An increase in M or t leads to a decrease in the velocity 
but greater cooling of the plate by free convection currents cause a rise in the velocity.  
 In figure (7) and (9), the velocity profiles are shown for fluids whose Prandtl number 
is unity.  
 A detailed numerical study has been carried out for an   MHD Stokes problem for an 
infinite vertical plate. The main conclusions of this study are as follows: 
 
(i) An increase in ` Pr ' leads to decrease in temperature when the values of `t’ are kept 

constant. Also, also time increases, the temperature also increases when ` Pr ' is kept 
fixed.  

(ii) Greater heating on of the plate, the velocity increases, whereas on greater cooling of 
the plate the velocity decreases. 

 

 Y Analytical Numerical | 
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Table1. Comparison of 
Temperature profiles when 
Pr=0.7333 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                             
 
                      
 
 
 
 
 
 
 
 
 

 

t Solution Solution Percentage 
of Error | 

0.0075 0 1 1 0.0000 
0.0075 0.05 0.7261 0.6799 0.0005 
0.0075 0.1 0.4846 0.4664 0.0002 
0.0075 0.15 0.2944 0.2502 0.0004 
0.0075 0.2 0.1621 0.1144 0.0005 
0.0075 0.25 0.0805 0.0472 0.0003 
0.0075 0.3 0.0360 0.0182 0.0002 
0.0075 0.35 0.0144 0.0067 0.0001 
0.0075 0.4 0.0052 0.0023 0.0000 
0.0075 0.45 0.0017 0.0008 0.0000 
0.0075 0.5 0.0005 0.0003 0.0000 
0.0075 0.55 0.0001 0.0001 0.0000 
0.0075 0.6 0.0000 0.0000 0.0000 
0.0075 0.65 0.0000 0.0000 0.0000 
0.0075 0.7 0.0000 0.0000 0.0000 
0.0075 0.75 0.0000 0.0000 0.0000 
0.0075 0.8 0.0000 0.0000 0.0000 
0.0075 0.85 0.0000 0.0000 0.0000 
0.0075 0.9 0.0000 0.0000 0.0000 
0.0075 0.95 0.0000 0.0000 0.0000 
0.0075 1 0.0000 0.0000 0.0000 
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Fig.2. Comparison of Temperature Profiles when Pr=0.7333 
 

Table.2. Comparison of Velocity when Pr=6.75 
 

t y 
Analytical 
solution 

Numerical 
solution 

| Percentage 
error | 

0.005 0 1          1  0.0000 
0.005 0.05 0.610230869 0.6300   0.0002 
0.005 0.1 0.311560833 0.3816   0.0007 
0.005 0.15 0.130586682 0.1644   0.0003 
0.005 0.2 0.04433234 0.0586   0.0001 
0.005 0.25 0.012075089 0.0186   0.0001 
0.005 0.3 0.002621086 0.0055   0.0000 
0.005 0.35 0.000451214 0.0015   0.0000 
0.005 0.4 6.13822E-05 0.0004   0.0000 
0.005 0.45 6.58E-06 0.0001 0.0000 
0.005 0.5 5.55E-07 0.0000   0.0000 
0.005 0.55 3.68E-08 0.0000   0.0000 
0.005 0.6 1.91E-09 0.0000   0.0000 
0.005 0.65 7.77E-11 0.0000   0.0000 
0.005 0.7 2.48E-12 0.0000   0.0000 
0.005 0.75 6.17E-14 0.0000   0.0000 
0.005 0.8 1.20E-15 0.0000   0.0000 
0.005 0.85 1.83E-17 0.0000   0.0000 
0.005 0.9 2.18E-19 0.0000   0.0000 
0.005 0.95 2.03E-21 0.0000 0.0000 
0.005 1 1.47E-23 0.0000 0.0000 
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Fig.3. Comparison of Velocity when Pr=6.75 

.  
Fig.4. Temperature profiles for fixed‘t’ and Pr <1 
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Fig.5.   Temperature profiles for different   ‘t’ and for fixed Pr=1 
 

 
 
       Fig (6) Velocity profiles for Pr<1 and different Gr, t, m (for heating of plate) 
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         Fig.7. Velocity profiles for Pr=1 and different Gr, t, m (for heating of plate) 
 
  
         

 
            Fig.8. Velocity profiles for Pr<1 and different Gr, M, t (for cooling of the plate) 
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     Fig.9. Velocity profiles for Pr=1 and different Gr, t, M (for cooling of the plate) 
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