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ABSTRACT 
In the present investigation we study a two Species competition model incorporating 

i) A constant number of S1 provided with reserve . and  
ii)   both the S1 and the S2 are harvested proportional to their population sizes. 

The model is characterized by a couple of first order non-linear ordinary differential equations. 
All the four equilibrium points of the model are identified and stability criteria are outlined.Some 
threshold theorems have been derived for Normal steady state and results are illustrated.  
Key words :Model equations , Stability ,Interactions,Equilibrium states, Threshold theorems 
 AMS Classification : 92 D 25, 92 D 40 
 
1.1 Basic Equations: 
               The model equation for the present two Species competing system is given by the 
following system of non-linear ordinary differential equations  

dt
dN1 = a 1(1-k1)N1- a 11N1

2- a 12(1-k)N1N2.      

 (1.1.1)
dt

dN 2 = 2a  (1-k2) N2- 22a  N2
2- 21a (1-k)N1N2.                                                   

  (1.1.2) 
 
      
 K is constant cover for Species S1  
      K1  is rate of decrease of the S1 due to harvesting. 
      K2 is rate of decrease of the S2 due to harvesting. 
   
1.2 Equilibrium states: 
The system under investigation has four equilibrium states. They are 
1. The fully washed out state. 1=0, 2=0                      (1.2.1) 

2.  1N   = 0 ; 2N  = 
22

22 )1(
a

ka          (1.2.2) 
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In this state, only the S2 survives and the S1 are washed out 

3. 1N  =
11

11 )1(
a

ka  :   2N  = 0        (1.2.3) 

In this state, only the S1 survives and the S2 are   washed out. 

4. 1N = 2
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(1.2.4) 

The state in which both the S1 and the S2 co-exists and this state is possible only  
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Such that  a11a22<a12a21.

 

The state 4 is called the “the normal steady state” 
 
 
1.3 THERSHOLD THEOREMS: 
The basic equations are: 

   1224
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Where  
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Theorem 3: Principle of Competitive Exclusion for the Normal Steady State: 

 1N = 2
21122211

12222211
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Suppose that 
1

3


k > k4  and 

2

4


k > k3  . Then every solution  of  N1(t) , N2(t) of (1.3.1) approaches 

the equilibrium solution N1(t) =  1N ( 0 )  and  N2(t)  = 2N ( 0 )  as  t approaches infinity . In 
other words, if Species 1 and 2 are nearly identical and the microcosm can support both the 
members of Species 1 and 2 depending up on the initial conditions. 
Proof: The first step in our proof is to show that  N1(t)  and  N2(t)  can never become negative. 
The this end observe that 

      N1(t) = 1N  =  2
21122211

12222211
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    and  

      N2(t) = 2N =  2
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Is a solution of (1.3.1) for any choice of  N1(0).  The orbit of this solution in the  N1 - N2  plane is 
the   point  (0,0) for  N1(0) = 0  ; the line   0 <  N1 < k3 , N2 = 0 for   N1(0)  >  k3 .Thus the N1axis, 
for  N1 ≥ ∞ is the union of four distinct orbits of  (1.3.1) . Similarly the N2  axis , for  N2  ≥  0, is 
the union of four distinct orbits of   (1.3.1) . This implies that all solution  N1(t) , N2(t) of (1.3.1) 
which start in the first quadrant  ( N1(t) > 0 , N2 > 0)  of the  N1 - N2   plane must remain there for 
all future time. 
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The second step in our proof is to split the first quadrant into regions in which both  
dt

dN1  and 

dt
dN2  have   fixed signs. This is accomplished in the following manner. 

Let   l1   and l2    be the lines    k3 - N1-  1 N2=0   and k4 - N2 - 2 N1= 0   respectively and the 

point of their intersection, is ( 1N  , 2N  ). Observe that  
dt

dN1  is negative if  ( N1, N2 )  lies above 

the line  l1      and  positive if  ( N1, N2 ) lies below . Thus the  two lines  l1   and l2   split the first 

quadrant of the  N1 - N2  plane into four regions in which both 
dt

dN1  and  
dt

dN2  have fixed signs.                

N1(t) , N2(t) both increase with time (along any solution of (1.3.1) in region I : 
N1(t) increases and   N2(t)   decreases  with time in region II: 
N1(t) decreases and   N2(t)   increases with time in region III: 
And both  N1(t)  and N2(t) decrease with time in region IV in this region both the S1&S2compete 
with each other but do not flourish and at the same tine do not get extinct. This is shown in 
Fig.1.1. 

        Fig 1.1   
 
 
Finally we require the following four lemmas. 
Lemma 1: Any solution of  N1(t) , N2(t)  of   (1.3.1)  which starts  in  region  I  at time   t  = t0 
will remain in this region for all future time t  ≥ t0   ,and ultimately approach the equilibrium 
solution  N1(t) = 1N  , N2(t) = 2N  (Fig.1.1 ) 
Proof: Suppose that a solution  N1(t) , N2(t)  of   (1.3.1)  leaves region I at time  t = t* .Then 

either  
dt

dN1 (t*)  or  
dt

dN2 (t*)  is zero. Since the only way a solution of (1.3.1) can leave region I 

is by crossing   l1   or   l2  . Assume that     
dt

dN1 (t*) = 0, Differentiation both sides of the first 

equation of (1.3.1)   with   respect to t and setting t = t* gives  
                                                                                  (1.3.2)          
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Hence   N1(t) is monotonic increasing and it has maximum whenever a solution of   N1(t) , N2(t)  
of   (1.3.1)  is in region I. 

Similarly, if   
dt

dN2 (t*) = 0 , then 

(1.3.3) 
Implies that N2(t)  is monotonic increasing and 
it has maximum whenever a solution N1(t) , 

N2(t)  of   (1.3.1)  is in region I 
If a solution  N1(t) , N2(t)  of  (1.3.1)  remains in region I for  t  ≥ t0  , then both  N1(t) and  N2(t)            
are  monotonic increasing functions of time for  t  ≥ tn  , with  N1(t) > k3 and  N2(t)  < k4 , 
consequently, both  N1(t)  and  N2(t)  have limits  ξ,   respectively. As t approaches infinity. This 
in turn implies that (ξ, )  is an equilibrium point of  (1.3.1) . Now,   (ξ, ) obviously cannot 
equal  (0,0):  (k3,0)  or  (0,k4). Consequently   (ξ, ) = (  1N  ,  2N ) . 
 Lemma2: Any solution of   N1(t) , N2(t)  of  (1.3.1)  which starts in region II at time t=  t0 will 
remain in this  region  for all future time     t  ≥ t0  , and ultimately approach the equilibrium 

solution    N1(t) = 2N  , N2(t) = 2N   (Fig.1.1). 
Proof: Suppose that a solution    N1(t) , N2(t)  of  (1.3.1)   leaves region II at time  t = t* . Then 

either    dt
dN1 (t*) or 

dt
dN2 (t*) is zero. Since the only way a solution of (1.3.1) can leave region II 

is by crossing   l1 or l2   .Assume that   dt
tdN *)(1  = 0. Differentiation both sides of the first 

equation of  (9.5.1)   with respect to t and setting  t = t* gives  

dt
tdN

k
tNa

dt
tNd *)(*)(*)( 2

3

1111
2 

          (1.3.4)  

This quantity is positive. Hence  N1(t)  has  a minimum at  t = t*  .However , this is impossible, 
since  N1(t)  is increasing whenever a  solution of  N1(t) , N2(t)  of  (1.3.1)  is in region  II. 

Similarly, if dt
dN2 (t*) = 0, 

Then  

dt
tdN

k
tNa

dt
tNd *)(*)(*)( 1

4

2222
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      (1.3.5)  

This quantity is negative, implying that  N1(t)  has a maximum at t = t*  ,but this is impossible, 
since  is decreasing whenever a solution   N1(t) , N2(t)  of  (1.3.1)  is in region II.  
                         The previous argument shows that any solution  N1(t) , N2(t)  of  (1.3.1)   which 
starts in region II at time  t = t0  will remain in region II for all future time  t  ≥ t0   . This implies 
that   N1(t) is monotonic increasing and  N2(t)  is monotonic decreasing for  t  ≥ t0   : with     N1(t) 
>k3 and  N2(t) < k4 . Consequently, both   N1(t)  and  N2(t) have limits  ξ, η respectively, as 
approaches infinity. This in turn implies that   (ξ, η) is an equilibrium   point of   (1.3.1) . 

Now (ξ, η) obviously cannot equal (0, 0); (k3,0) or (0,k4) . Consequently, (ξ, η) = )N,N( 21 and 
this proves Lemma 2 
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Lemma 3: Any solution of    N1(t) , N2(t)  of  (1.3.1)  which starts in region III at time  t=  t0   
will remain in this region  for all future time t  ≥ t0  , and ultimately approach the equilibrium 

solution  N1(t )=  1N , N2(t )=  2N ,  (Fig.1.1) 
Proof: Suppose that a solution   N1(t) , N2(t)  of  (1.3.1) leaves  region III at time   t = t*.  Then 

either    dt
dN1 (t*) or 

dt
dN2 (t*)   is zero. Since the only way a solution of   (1.3.1) can leave region 

II is by crossing l1 or l2. Assume that   dt
dN1 (t*) = 0, Differentiation both sides of the first 

equation of   (1.3.1)  with respect to t and setting t = t* gives  

dt
tdN

k
tNa

dt
tNd *)(*)(*)( 2

3
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      (1.3.6) 

  since  N1(t) is decreasing whenever a solution  of  N1(t) , N2(t)  of  (1.3.1) is in region II . 
This quantity is negative. Hence   N1(t) has a maximum at  t = t* . However, this is impossible 

 Similarly, if    dt
dN2 (t*) = 0, then 
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      (1.3.7) 

This quantity is positive, implying that   N2(t)  has a minimum at  t = t* , but  this is impossible, 
since   N2(t)  is increasing whenever a solution  N1(t) , N2(t)  of  (1.3.1) is in region III. 

The previous argument shows that any solution   N1(t) , N2(t)  of  (1.3.1)  which starts in 
region III at time  t=  t0   will remain in region III for all future time  t  ≥ t0  .This implies that          
is monotonic increasing and   N2(t)  is  monotonic decreasing for  t  ≥ t0    ; with                                 
. Consequently, both     N1(t) and  N2(t)  have limits   ξ, η   . Now (ξ, η)  obviously cannot equal 
(0,0): (k3,0) or (0,k4) . Consequently,(ξ, η) =   (  1N  ,  2N )  and this proves Lemma3 
Lemma 4:Any solution of    N1(t) , N2(t)  of  (9.5.1)  which starts in region IV at time  t=  t0   will 
remain in this region  for all future time t  ≥ t0  , and ultimately approach the equilibrium solution  

N1(t )=  1N ,N2= 2N   (Fig.1.1) 
Proof: Suppose that a solution   N1(t) , N2(t)  of  (1.3.1)   leaves region VI at tome  t = t* . Then 

either    
dt

dN1 (t*) or 
dt

dN2 (t*) is zero. Since the only way a solution of     (1.3.1)   can leave 

region IV is by crossing l1   or   l2   . Assume that   
dt

dN1 (t*)   =0. Differentiation both sides of the 

first equation of   (1.3.1)   with respect to t and setting    t = t* gives  

dt
tdN
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This quantity is positive. Hence N1(t)  is monotonic decreasing and it has minimum 
whenever a solution of  N1(t) , N2(t)  of  (1.3.1)   is in region VI. 

Similarly, if     
dt

dN2 (t*) = 0, then  
                      (1.3.9) 

 
This quantity is positive .implying that   N2(t)  is dt
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monotonic decreasing and it has minimum whenever a solution  N1(t) , N2(t)  of  (1.3.1)   is in 
region IV. 
 If a solution   N1(t) , N2(t)  of  (1.3.1)   remain in region VI for  t  ≥ t0  , then both   N1(t) 
and N2(t)  are monotonic decreasing functions of time for  t  ≥ t0 , with   N1(t) > k3 and N2(t) > k4 .                              
consequently , both  N1(t) and  N2(t)  have limits ξ, η  respectively ,as t approaches infinity . This, 
in turn implies that (ξ, η) is an equilibrium point of (1.3.1). Now, (ξ, η) obviously cannot equal 
(0,0): (k3,0) or (0,k4) .Consequently (ξ, η) =   (  1N  ,  2N ).                                . 
Proof of theorem: Lemmas 1,2,3 and 4 state that every solution  N1(t) , N2(t)  of  (1.3.1) which 
starts in region I,II , III or IV at time  t=  t0   and  remains there for all future time must also 
approach equilibrium solution   N1(t) = 2N  , N2(t) = 2N , as  t approaches infinity. Next , 
observe that any solution N1(t) , N2(t) of (1) which starts on l1   or   l2  must  immediately 
afterwards enter region I,II,III or IV. Finally the solution approaches the equilibrium solution 
N1(t) = 2N ,  N2(t) = 2N  . This is illustrated in Fig.1.2 
 

                                     
                                 Fig 1.2 
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