Available online at www.internationaleJournals.com

INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES, TECHNOLOGY AND HUMANITIES

International eJournals

International Journal of Mathematical Sciences, Technology and Humanities 49 (2012) 498 – 519

www.internationalejournals.com

Fixed Point Theorems in 2 – Uniform Space

B.Nageswara Rao

Department of Basic Science and Humanities (Mathematics), Costal Institute of Technology and Management, Narapam, Kothavalasa-535183, Vijayanagaram district, A.P., India

1. INTRODUCTION:

In this paper we have introduced contraction type mappings in 2 – Uniform spaces and them some fixed point theore as have been proved in 2 – uniform space. Our results generalizes the results of many authors such as Lal and Singh [3], Das and Sharms [1] Singh and Singh [5] etc.

1.1 PRELIMINARIES:

In this section we shall do some definitions and lemmas.

1.1 **DEFINITION:** A Pseudo -2 - Metric p for a set X in a real valued function defined on X x X x X, such that for all a,b,c,d, $\in X$, we have (i) p(a,b,c) > O and p(a,b,c) ... O. If at least two of a.b.c are equal. (ii) p(a,b,c) = p(b,c,a) = p(c,a,b) = so on. (iii) $p(a,b,c) \le p(a,b,d) + p(a,d,c) + p(d,b,c)$.

A set X together with a pseudo 2 - metric P Is called <u>pseudo - 2 - metric space</u> (X,p).

(1.1.2) **DEFINITION:** A 2 – uniformity for a set X is a non void family .. of subsets of X x X x X such that

(u₁) each member of Contains the diagonal Δ of X³, $\Delta = [(x,x,x) : x \in X]$

(u₂) If $u \in ...$ then vo vo $v \subseteq u$ for some v in

(u₃) If u and v are members of … then u \cap v ϵ …..

 $(u_4) \ If \ u \ \epsilon \ \dots \ and \ u \ \subseteq \ v \ \ \subseteq \ X^3 \ then \ v \ \epsilon \ \dots \ .$

International Journal of Mathematical Sciences, Technology and Humanities 49 (2012) 498 – 519 B.Nageshwara Rao

By <u>2- uniform space</u>, we mean a set X endowed with 2 – uniformity ... in X, written as (x,...)

(1.1.3) **EXAMPLE:** Every 2 – metric space (X,d) is 2 – uniform space.

(1.1.4) **DEFINITION:** If (x,) is a 2 – uniform space, then a subject Of ... will be called a basis for (x,)

- (i) if x ε X and u ε, then (x,x,x) ε
 (ii) if u ε ..., then u⁻¹ contains a member of
 (iii) If u ε, then vo vo v ⊆ u for some v in
 (iv) for each u ε And v ε there is a w ε in which w⊂ u ∩ v.
- (7.1.5) <u>DEFINITION</u>: A net $\phi : D \to X$ in a space X is said to converge to a point x ε X iff ϕ is eventually in every neighbourhood of p.

<u>DEFINITION</u>: By <u>Cauchy net</u> (or fundamental net) in a 2 – uniform space (X,), we mean a net $\phi : D \rightarrow X$ in the space X such that for an arbitrary member u of there exists a residual subset B of D satisfying (ϕ (a), ϕ (b), c) ε , for any three members a,b and c of E.

(7.1.6) <u>DEFINITION:</u> \wedge 2 – uniform space (x,) is called Sequentially complete if every Cauchy sequence in X converge to a point in X.

Now, for any pseudo -2 - metric p on any r > O, we write

 $V_{(p,r)} = \{ (x,y,z) : x,y,z \in X \text{ and } p(x,y,z) < r \}$ Let P be a family of pseudo -2 – metrics on X

Generating the uniformity. Denote V the family of all $\prod_{n=1}^{n} M(n) = \sum_{n=1}^{n} M(n)$

Sets of the form $\bigcap_{l=1}^{n} V(p_{1}, r_{1})$, where $P_{1} \in P$ and

 $r_1
ightarrow O$, 1 = 1, 2 N (the integer is not fixed). Then clearly V is a base for the uniformity

Let V ε V, then v = $\bigcap_{l=1}^{n}$ V (p₁, r₁), where P₁ ε P and r₁ > O, 1 =1,2 n, For each ε > O₁,

The set $\bigcap_{i=1}^{n} V(P_{1}, \alpha r_{i})$, belongs to V we denote this set by αv .

International Journal of Mathematical Sciences, Technology and Humanities 49 (2012) 498 – 519 B.Nageshwara Rao

- (1.1.8) <u>LEMMA:</u> If $v \in V$ and α , β are positive Then $\alpha(\beta v) = (a \beta) v$.
- (1.1.9) <u>LEMMA:</u> If $v \in V$ and α , β are positive Then $\alpha v \subset \beta v$ where $\alpha < \beta$.
- (1.1.10) <u>LEMMA:</u> Let p be any pseudo ... metric on \ddot{A} And α , p be any two positive numbers, If (x,y,z) $\epsilon \quad \alpha \lor (p,r_1) \circ \beta \lor (p, r_2)$ then $P(x,y,z) < \alpha r_1 + \beta r_2.$
- (1.1.11) <u>LEMMA</u>: If $v \in V$ and α , β are positive, Then $\alpha v \circ \beta v \subset (\alpha + \beta) v$.

(1.1.12) <u>NOTE</u>: Let p be any pseudo -2 – metric an x and α , β , γ be three positive numbers.

If $(x,y,z) \in \alpha v (p,r_1)^{o\beta v} (p,r_2)^{o\gamma v} (p,r_3)$. Than $p(x,y,z) < \alpha r_1 + \beta r_2 + \gamma r_3$

(1.1.13) <u>LEMMA:</u> Let x,y,z ε X, then for every v in v there is a positive number λ such that (x,y,z) $\varepsilon \lambda v$. The proofs of 1.1.8 – 1.1.13 are simple hence we omit here.

(1.1.14) <u>LEMMA:</u> Let v be any member of V. Then there is a pseudo -2 – metric p on X, s,t. v = V(p,l).

Proof: Let (x,y,z) be any three points of X, The by lemma (1.1.15) there is a $\lambda > \cup$ such that $(x,y,z) \in \lambda$, \forall write $A_{(x,y,z)} = \{ \lambda : \lambda > \cup \text{ and } (x,y,z) \in \lambda, \forall \}$

Now we define p(x,y,z) by $p(x,y,z) = Inf \{\lambda : \lambda \in A(x,y,z)\}.$

If x ε X, then clearly (X x X x X) ε v for any > 0. This shows that A(x,x,x) = { $\lambda : \lambda > 0$ }.

So p(x,x,x) = Inf A(x,x,x) = O. Again since v is symmetric it follows that

 $A(x,y,z) = A(y, z, x) = A(z, x, y) = \dots$

So,

 $P(x,y,z) = p(z,x,y) = p(y,z,x) = \dots \ge 0.$ Now Let x,y,z,a be any four points of X. Choose $\varepsilon > O$ Arbitrarily, Tak $\alpha = p(x,y,a) + \varepsilon$, $\beta = p \ \emptyset(x,a, z) > \varepsilon \text{ and } \gamma = p \ (a, y, z) + \varepsilon$ The, $\alpha \in A(x,y,a)$, $\beta \in A(x, a,z)$ and $\gamma \in A(a,y,z)$ i.e (x,y,a) $\varepsilon \alpha v$, (.....) $\varepsilon \beta v$ and (a,y,z) $\varepsilon \gamma v$, This gives that $(x,y,z) \in \beta \vee o \alpha \vee o \gamma \vee v = \alpha \vee o \beta \vee o \gamma \vee v \subset (\alpha + \beta + \gamma) \vee (by note)$ 1.1.12) Thus, $(\alpha+\beta+\gamma) \in A(x,y,z)$. So, P(x,y,z) is $\alpha + \beta + \gamma = p(x,y,a) + p(x,a,z) + p(a,y,z) + 3\varepsilon$ Since $\varepsilon > \cup$ is arbitrarily, be get P(x,y,z) < p(x,y,a) + p(x,a,z) + p(a,y,z)Thus, p is a pseudo - 2 metric on X. Let x,y,z $\epsilon \wedge$ and p(x,y,z) < 1. Choose any α with p (x,y,z) < α < 1, Then $\alpha \in A$ (x,y,z) which gives that $(x,y,z) \in \alpha v \subset v.$ (By lemma 1.1.9). So $v_{(p,1)} \subset V$ (I)

Again let $(x,y,z) \in V$. Since $v \in V$. We can choose $V = \bigcap_{i=1}^{n} v_{(p1, r1)}, P_1 \in P$ and $r_1 > O$.

Write $\alpha_1 = P_1(x,y,z)$, then $O \le \frac{a_1}{r_1} \times 1$, (1 = 1,2,...,n)

Let
$$\theta = \max$$
, $\left\{\frac{a_1}{r_1}, 1 = 1, 2, \dots, n\right\}$. Then $O \le \theta \le 1$.

Choose any positive a with $\theta < \alpha < 1$, we have

$$P_1(x,y,z) = \alpha_1 = \frac{a_1}{r_1} r_1 \le \theta r_1 \le r_1 (1 = 1, 2, \dots, n)$$

So, $(x,y,z) \in \bigcap_{n \in \mathbb{N}} V(p_1,r_1) = \alpha \vee 1 = 1$ And hence $p(x,y,z) \le \alpha \le 1$. Thus (II) $V \subset V_{(p,1)}$,

From I and II, we get V = V(p,l).

<u>NOTE</u>: We shall call p- Minkowski's pseudo -2 – Metric of V.

(1.1.15) **DEFINITION:** Let β be a basic for the 2 – uniform Space(X,....) and let f be a function on X into X, then

(a) f is said to be a <u>contraction</u> with respect to If $(f(x), f(y), z) \in U$ whenever $(x,y,z) \in U \in$

(b) f is said to be <u>expansion</u> with respect to If $(x,y,z) \in U$ whenever $(f(x), f(y), z) \in U \in$

1.2 RESULTS OF FIXED POINT OF OPERATIONS:

In this section we assure that (x,) is a 2 – uniform space which is sequentially complete and also Hausdorif, Further we suppose that P is a fixed family of paseudo – 2 – metric on X which generates the uniformityWe denote γ the family of all sets

the form $\bigcap_{i=1}^{n} V(p_1, r_1)$, $P_1 \in P$ and $r_1 > O$.

(the integer n is not fixed). By an operator on X we mean a mapping of X into itself.

(1.2.1) **<u>THEOREM</u>**: Let $\{S_1, S_2, \dots, S_{q_1}\}$ and $\{T_1, T_2, \dots, T_{q_n}\}$

Be two sets of operators such that

(i) $S_1 (1 \le 1 \le q_1)$ and $T_{\mu} (1 \le \mu \le q_2)$ all maps X into itself.

- (ii) $T_{\mu}T_{\gamma} = T_{\gamma}T_{\mu}$ where $1 \le \mu \gamma \le q_2$.
- (iii) For all x, y, ε X and for every $\alpha \varepsilon$ X and each p ε P, any five members V₁, V₂,V₃, V₄, V₅ in V (S(x), T(y), α)) $\varepsilon \alpha_1 v_1 \circ \alpha_2 v_2 \circ \alpha_3 v_3 \circ \alpha_4 v_4$, $\circ \alpha_5 v_5$ with S = S₁ S_{q1}; T = T₁ T_{q2}. If (x, S(x), a) εV_1 , (y, T(x), a) εV_2 , (x, T(y), a) εV_3

 $(y, S(x), a) \in V_4$, $(x, y, \alpha) \in V_5$, where each

(iv) O <
$$\frac{a_1 + a_3 a_5}{1 - a_2 - a_3} : \frac{a_2 + a_4 + a_5}{1 - a_2 - a_3} < 1, 1 - \alpha_2 - \alpha_3 \neq 0, 1 - \alpha_1 - \alpha_4 \neq 0.$$

Then S₁ (1 < I < q₁) and T_u (1 < µ < q₂) all have a unique common fixed point.

<u>Proof</u>: From given condition (iv) we have $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 < 1$ (1)

Suppose
$$K_1 = \frac{a_1 + a_3 + a_5}{1 - a_2 - a_3}$$
: $K_2 = \frac{a_2 + a_4 + a_5}{1 - a_1 - a_4}$(2)

Let v be any member of V and p be the Mindowski's 2 pseudo 2 – retric of V. Consider x,y,a be any three

Points of X.

Put, p(x, S9x), $a) = r_1 : p(y, T(y), a) = r_2$, $P(x, T(y), a) = r_3 : P(y, S(x), a) = r_4$, $P(x,y,a) = r_5$ and take $\varepsilon > 0$, then $(x, S(x), a) \varepsilon (x_1 + \varepsilon) v$, $(y, T(y), a) \varepsilon (r_2 + \varepsilon) V$, $(x, T(y), a) \varepsilon (r_3 + \varepsilon)v$, $(y, S(x), a) \varepsilon (r_4 + \varepsilon) v$, $(x,y,a) \varepsilon (r_5 + \varepsilon) v$. Then by given condition we have $(S(x), T(y), a) \in a_1 (r_1 + \varepsilon) v \circ a_2 (r_2 + \varepsilon) v \circ a_3 (r_3 + \varepsilon) v \circ a_4 (r_4 + \varepsilon) v \circ a_3(r_5 + \varepsilon) v$.

Then by lemma (1.1.10), we get

$$\begin{split} P(S(x), T(y), a) &< a_1(r_1 + \epsilon) + a_2(r_2 + \epsilon) + a_3(r_3 + \epsilon) + a_4(r_4 + \epsilon) + a_3(r_5 + \epsilon) \\ &= a_1 r_{1=+} a_2 r_2 + a_3 r_3 + a_4 r_4 + a_5 r_5 + (a_1 + a_2 + a_4 + a_5) \epsilon \end{split}$$

As ε is arbitrary, we have

 $p(S(x), T(y), a) \le a_1 p(x, S(x), a) + a_2 p(y, T(y), a) + a_3 p(x, T(y), a) + a_4 P(y, S(x), a) + a_5 p(x, y, a).$

We take any $X_0 \in X$ and construct a sequence $\{x_h\}$ in X by setting

 $X_{2n+1} = S(x_{2'n})$ and $x_{2n+2+} = Tx_{2n+}$ for $n = 0, 1, 2, \dots, (3)$.

Now, $p(x_{2n-1}, x_{2n}, a) = p(S(x_{2n-2}), T(x_{2n-1}), a)$

 $< a_1 P (X_{2n-2}), T(x_{2n-2}), a)$ $+ a_2 p(x_{2n-1}, T(x_{2n-1}), a)$ $+ a_3, p(x_{2n-2}, T(x_{2n-1}), a)$ $+ a_4 p (x_{2n-1}, T(x_{2n-1}), a)$ $+ a_5 p(x_{2n-2}, T(x_{2n-1}), a)$

Hence, $P(x_{2n-1}, x_{2n}, a) \dots k_1 p(x_{2n-2}, T(x_{2n-1}), a)$

From (2) (4)

Now, $p(x_{2n-1}, x_{2n+1}, a) = p(T(x_{2n-1}), S(x_{2n}), a)$

 $= p(S(x_{2n}), T(x_{2n-1}),a)$ $\leq a_1 P (X_{2n}, S x_{2n}, a)$ $+ a_2 p(x_{2n-1}, Tx_{2n-1},a)$ $+ a_3 p(x_{2n}, Tx_{2n-1},a)$ $+ a_4 p(x_{2n-1}, Sx_{2n},a)$ $+ a_5 p(x_{2n-1}, x_{2n},a)$

i.e $p(x_{2n}, x_{2n-1}, a) \le k_2 p(x_{2n-1}, x_{2n}, a)$ (5) $\le k_1 k_2 p(x_{2n-2}, x_{2n-1}, a)$ $\ge k_1^n k_2^n p(x_0, x_1, a)$ (6)

and
$$p(x_{2n+1}, x_{2n+2}, a) \le k_1 p(x_{2n}, x_{2n+1}, a)$$

 $\vdots k_1 k_1^n k_2^n p(x_0, x_1, a) \text{ (from (6))}$
 $= (1 + k_1) (k_1 k_2) p(x_0, x_1, a)$

Therefore by repeated use of trainable inequality and of Reduction formulas (6) and (7),

we get

$$\begin{split} P(X_m, X_{m+n}, a) &\leq p(X_m, X_{m+1}, X_{m+n}) + p(X_m, X_{m+1}, a) \\ &+ p(X_{m+1}, X_{m+2}, X_{m+n}) + p(X_{m+1}, X_{m+2}, a) \\ &+ \dots \\ &+ p(X_{m+n-2}, X_{m+n-1}, X_{m+n}) + p(X_{m+n-1}, X_{m+n}, a) \end{split}$$

Now, $p(x_{2n-1}, x_{2n+1}, a) = p(T(x_{2n-1}), S(x_{2n}), a)$

International Journal of Mathematical Sciences, Technology and Humanities 49 (2012) 498 – 519 B.Nageshwara Rao

 $= p(S(x_{2n}), T(x_{2n-1}), a)$ $\leq a_1 p(x_{2n}, Sx_{2n}, a)$ $+ a_2 p(x_{2n-1}, Tx_{2n-1}, a)$ $+ a_3 p(x_{2n}, Tx_{2n-1}, a)$ $+ a_4 p(x_{2n-1}, Sx_{2n-1}, a)$ $+ a_5 p(x_{2n-1}, x_{2n}, a)$ i.e. $p(x_{2n}, x_{2n+1}, a) \leq K_2 p(x_{2n-1}, x_{2n}, a)$ (5) $\leq k_1 k_2 p(x_{2n-2}, x_{2n-1}, a)$: \leq : $\leq k_1^n k_2^n p(x_0, x_{1,a}) \dots \dots \dots (6)$ And $p(x_{2n+2}, x_{2n+2}, a) \leq k_1 p(x_{2n}, x_{2n+1}, a)$:

Therefore by repeated use of triangle inequality and of reduction formulas (6) and (7), we get

$$\begin{split} P(x_{m,} \; x_{m+n}, \; a) &\leq p \; (x_{m,} \; x_{m+1}, \; x_{m+n}) + p(x_{m,} \; x_{m+1}, \; a) - \\ &\quad + p(x_{m+1}, \; x_{m+2} \; x_{m+n}) \; + p(x_{m+1}, \; x_{m+2}, a) \\ &\quad + \; \dots \dots \dots + \; \dots \dots \dots \\ &\quad + \; p(x_{m+n-2}, \; x_{m+n-1}, \; x_{m+n}) + p(x_{m+n-1}, \; x_{m+n}, \; a) \end{split}$$

Now we show that $p(x_m, x_{m+1}, x_{m+2}) = O$.

$$p(x_{m+1}, x_{m+2}, x_m) = p(S_{xm}, Tx_{m+1}, x_m)$$

$$\leq a_1 p (x_m, Sx_m, sx_m) + a_2(x_{m+1}, Tx_{m+1}, x_m)$$

$$+ a_3 p(x_{m+1}, Tx_{m+1}, x_m) a_4 p (x_{m=1}, Sx_m, x_m)$$

$$+ a_5 p(x_m, x_{m+1}, x_m)$$

$$= a_1 p(x_m, x_{m+1}, x_m) + a_2 p(x_{m+1}, x_{m+2}, x_m)$$

$$+ a_3 p (x_m, x_{m+1}, x_m) + a_4 p(x_{m+1}, x_{m+1}, x_m)$$

(1- a₂) $p(x_{m+1}, x_{m+2}, x_m) \le O$ which implies that $p(x_{m+1}, x_{m+2}, x_m) = O$.

Now, we show that $p(x_0, x_1, x_m) = O$ for $m = O, 1, 2, \dots$

This is true for m = O, and m = 1, Suppose now that it holds for every m in $2 \le m \le k - 1$. Then

$$p(x_{o}, x_{1}, x_{k}) \leq p(x_{o}, x_{1}, x_{k-1}) + p(x_{o}, x_{k-1}, x_{k}) + p(x_{k-1}, x_{1}, x_{..})$$

$$\leq (1 + k_{1})(k_{1} k_{2}) \frac{k - 1}{2} [p(x_{o}, x_{o}, x_{1}) + p(x_{o}, x_{1}, x_{1})] = O$$

Hence $p((x_o, x_1, x_m) = O$

Since $p(x_m, sx_{m+1}, x_{m+n}) \le (1+k_1) (k_1k_2)^{m/2} [p(x_o, x_1, x_{m+n})],$

It follows that $p(x_m, x_{m+1}, x_{m+n}) = o$ and thus

As $k_1k_2 < 1$ the R.H,S of the above inequality tends to zero as $n \to \infty$, Hence (x_n) is a Cauchy sequence. Since X is sequentially complete there is a point ... in x such that $u = n L_t \infty$, X_n

Now we show that u is a unique common fixed point of s and T. Let v be any member of V and p be the Minkowski's pseudo 2 -metric of v. For any positive integer n, we have

$$\begin{split} P(u, \, S_u, a) &\leq p(u, S_u, x_{2n}) + p(u, x_{2n}, a) + p(x_{2n}, Su, a) \\ &= p(u, \, x_{2n}, a) + p(u, \, Su, \, x_{2n}) + p(Tx_{2n-1}, \, Su, \, a) \\ &\leq p(u, \, x_{2n}, a) + p(u, \, Su, \, x_{2n}) + a_1 \, p(u, S_u, a) \\ &+ a_2 P(x_{2n-1}, \, Tx_{2n-1, a}) + a_3 \, p(u, \, Tx_{2n-1, a}) \\ &+ a_4 P(x_{2n-1}, \, Su, \, a) + a_5 \, p(u, \, x_{2n}, a) \\ &\propto p(u, x_{2n}, \, a) + p(u, \, Su, \, x_{2n}) + a_1 \, p(u, \, Su, \, a) \\ &+ a_2 \, p(x_{2n-1}, \, x_{2n+1, a}) + a_3 \, p(u, \, x_{2n}, \, a) \\ &+ a_4 p(x_{2n-1}, \, Su, \, a) + a_3 \, p(u, \, x_{2n}, \, a) \end{split}$$

When $n \to \infty$, as $x_{2n} \to u$, $x_{2n-1} \to u$, $x_{2n-1} \to u$.

And thus $p(u, Su, a) = a_1 p(u, Su, a) + a_4 (u, Su, a)$

or, $(1-a_1 - a_4) v (u, Su, a) \le O$ i.e. p(u, Su, a) = O, So $(u, Su, a) \varepsilon v$.

v being arbitrary and X being Hausdorix space.

We have u = Su. Similarly, u = Tu.

For the uniqueness of u, let $u \neq u$ is also fixed point common to both S and T such that $S(\bar{u}) = T(\bar{u}) = \bar{u}$ giving $p(u, \bar{u}, a) = p(Su, T\bar{u}, a)$

$$\leq a_1 p(u, Su, a) + a_2 p(u, T(u), a) + a_3 p(u, T, (u), a) + a_4 p(u, S(u), a) + a_3$$

p(u, *u*, a).

i.e $p(u, u, a) \le a_1 p(u, u, a) + a_2 p(u, u, a) + a_3 p(u, u, a) + a_4 p(u, u, a) + a_5 p(u, u, a)$ which gives $p(u, u, a) \le O$ and thus u = u.

Now we shall show that u is the unique common fixed point of S_1 ($1 \le 1 \le q_1$) and $T\mu (1 \le \mu \le q_2)$.

For S(u) = u and $S(S_1(u)) = S_1S(u) = S_1(u)$.

i.e. $S_1(u) = u$ by the uniqueness of u as the fixed points of S. Similarly $T_{\mu}(u) = u$. Finally we shall show that u is the only fixed point common to

 $\begin{array}{l} S_1 \ (1 \leq 1 \leq q_1) \ \text{and} \ \ldots _\mu \ (1 \leq \mu \leq q_2). \ \text{For if} \ u^* \ \text{were such a point such that} \ u^* = u \ \text{and} \\ S_1(u^*) = T_\mu \ (u^*) \ = \ u^* \\ \text{Then} \ p(u, u^*, a) \ \ldots \ p \ (S_1 \ (u), \ T_\mu(u^*), a) \\ \ \ldots \ p \ (S(u), \ T(u^*), a) \\ \ \leq a_1 \ p(u, \ Su, a) + a_2 \ p(u^*, \ T \ u^*, a) + \\ a_3 \ p(u, \ T \ u^*, a) + a_4 \ p(u^*, \ Su, a) + \\ a_5 \ p \ (u, \ u^*, a) \end{array}$

Which gives $p(u, u^*, a) = O$ and so $u = u^*$. //

(1.2.2) **<u>THEOREM</u>**: Let T_1 and T_2 be two operators such that

- (i) T_1 and T=2 map X into itself (ii) $T_1T_2 = T_2T_1$
 - (iv) for all x,y,z₁, $z_2 \in X$ and each a ε x and each

p ϵ p any six members v₁, v₂, v₃, v₄, v₅, v₆ in v

 $(T_1(x), T_2(y), a) \le a_1 v_1 \text{ o } a_2 v_2 \text{ o } a_3 v_3 \text{ o } a_4 v_4 \text{ o } a_5 v_5 \text{ o } a_6 v_6$ If $(x, T_1^{k}(z_1), a) \varepsilon v_1$; $(y, T_2^{k}(z_2), a) \varepsilon V_2$; $(x, T_1^{k}(z_2), a) \varepsilon v_3$; $(y, T_1^{k}(z_1), a) \varepsilon v_4$; $(T_1^{k}(x_1), T_2^{k}(x_2), a) \varepsilon v_5$ and $(x, y, a) \varepsilon v_6$ where a_1 (i = 1, 26) all are

Independent of x,y,a, z_1 , z_2 and v_1 , v_2 v_6 with

 $a_1 \le O$ for each $i = 1, 2, \dots, 6$: $\sum_{i=1}^{6} a_1 < 1, k \ge 1$ (k is an positive integer) Then T_1 and T_2 have a unique common fixed point.

<u>Proof:</u> Suppose v be any member of v and p the Minkowski's pseudo -2 – metric of v – write.

$$\begin{split} P(x,T_1^{\ k}(z_1),\,a) &= r_1 \, : \, p(y,\,T_2^{\ k}(z_2),\,a) = r_2 \\ P(x,\,T_2^{\ k}(z_2),\,a) &= r_3 \, : \, p(y,\,T_1^{\ k}(z_1),\,a) = r_4 \\ P(T_1^{\ k}(z_1),\,T_2^{\ k}(z_2),\,a) &= r_5 \, : \, p(x,y,a) = r_6. \end{split}$$

For any $\varepsilon > O$ we have

 $\begin{array}{l} (x,T_{1}^{\ k}(z_{1}),\,a)\,\epsilon\,(r_{1}+\epsilon)\,v:(y,\,T_{2}^{\ k}\,(z_{2}),a)\,\epsilon\,(r_{2}+\epsilon\,)v\\ (x,\,T_{2}^{\ k}(z_{1}),\,a)\,\epsilon\,(r_{3}+\epsilon)\,v:(y,\,T_{1}^{\ k}\,(z_{1}),a)\,\epsilon\,(r_{4}+\epsilon\,)v\\ (T_{1}^{\ k}(z_{1}),\,T_{2}^{\ k}(z_{2}),\,a)\,\epsilon\,(r_{5}+\epsilon\,)v:(x,y,a)\,\epsilon\,(r_{6}+\epsilon)\,v. \end{array}$

Then by given conditions

 $(f(x), g(y), a) \epsilon a_1(r_1 + \epsilon) v_0 a_2(r_2 + \epsilon) v o a_3(r_3 + \epsilon) v o a_4 (r_4 + \epsilon) v o a_5 (r_5 + \epsilon) v o a_6(r_6 + \epsilon) v$

They by lemma (1.1.10) and since ε is arbitrary, we have

$$\begin{split} P(f(x), g(y), a) &< a_1 p \; (x, f^k(x_1), a) + a_2 \; p(y, g^k(z_2)a) + \\ a_3 p \; (x, g^k(z_2), a) + a_4 p(y, f^k(z_1), a) + \\ a_5 p \; (f^k(z_1), g^k(z_2), a) + a_6 \; p(x, y, a) \; \dots \dots \dots (1) \end{split}$$

For arbitrary z and w in X put

 $\begin{aligned} X &= T_2^{\ k}(x), \ y = \ T_1^{\ k}(w), \ x_1 = w, \ x_2 = x \ in \ (1) \ we \ get \\ P(T(T_2^{\ k}(x), \ T_2(T_1^{\ K}(w)), a) < a \ p(T_2^{\ k}(z), \ T_1^{\ K}(w), a) \ \dots \dots \ (2) \end{aligned}$

(where $a = a_1 + a_2 + a_5 + a_6 < 1$)

Let $x_0 \in X$ be arbitrary, Consider $\{x_n\}$ as follows:

International Journal of Mathematical Sciences, Technology and Humanities 49 (2012) 498 – 519 B.Nageshwara Rao

$$\chi_n = \begin{cases} T_1(X_{n-1}) \text{ when n is odd} \\ T_2(X_{n-1}) \text{ when n is even} \end{cases}$$

In view of the given condition (ii) we observe that

$$X_{2n} = T_1^{n} T_2^{n} (x_0) : x_{2n+1} = T_1^{n+1} T_2^{n} (x_0)$$

Let n > t which gives no = f + g for some positive integer q > 1.

Taking m > n > t, and preoceeding similarly to the previous theorem we can show that $\{x_n\}$ is a Cauchy sequence in X, Since x is sequentially complete Housdorff space, there exits $u \in x$ such that $u = Lt x^n$.

For any odd positive integer h, we have

 $P(u, T_2(u), a) \le p(u, T_2(u), x_h) + p(u, x_{h,a}) + p(x_h, T_2 u, a)$

$$= p(u, T_2(u), x_h) + p(u, x_h, a) + p(T_1(x_{h-1}, T_2(u), a))$$

Taking $x = x_{h-1}$: y = u, $z_1 = T_2^{k}(x_{h-1})$, $Z_2 = T_1^{k}(x_{h-1})$ in (1)

And using the above inequality, we get

$$P(u, T_2(u), a) \le p(u, T_2(u), x_h) + p(u, x_h, a)$$

+
$$(a_1 + a_3)p(x_{h-1}, x_{h+2k-1}, a)$$

$$+ (a_2 + a_4) (u, x_{h+2k-1}, a) + a_6 p(x_{h-1}, u, a)$$

When $h \rightarrow \infty x_h$, x_{h-1} , x_{h+2h-2} all tends to u.

i.e. $p(u, T_2(u), a) \leq O$. Thus $p(u, T_2(u), a) \in v$.

v being an arbitrary and x being Hausdorff space.

We have $u = T_2(u)$. Similarly we can show that $u = T_1(u)$.

Thus u is a common fixed point of T_1 and T_2 . To show that the uniqueness of u. Let

 $\overset{\infty}{=} \neq u$ is also a common fixed point of T₁ and T₂ such that

$$\mathbf{T}_1\left(\overset{\infty}{u}\right) = T_2\left(\overset{\infty}{u}\right) = \overset{\infty}{u}.$$

50.5

For this we put $x = u = z_2$ and $y = u = z_1$ in (1) and we get the desired result. //

(7.2.3) <u>THEORM:</u> Let T_1 and T_2 be two operators such that

- (i) T_1 , T_2 maps X into itself
- (ii) $T_1, T_2 = T_2 T_1$
- (iii) For all x,y,z, z_2 , z_3 in < and for each a ε X and each p ε P, any five members v_1, v_2, v_3, v_4, v_5 in v.
- $(T_1(x),\,T_2(y),\,a) \ \epsilon \ a_1v_1 \ o \ a_2 \ v_2 \ o \ a_3 \ v_3 \ o \ a_4 \ v_4 \ o \ a_5 \ v_5$

If $(x, T_1^k (z_1), a) \in v_1 : (y, g^k(x_2), a) \in v_2 :$ $(T_1(x), T_1^k (X_3), a) \in v_3 : (T_2(y), T_1^k (z_3), a) \in V_4 : (x, y, a) \in V_5$ where each a_1 (i=1,2,3,4,5)

are independent of x,y,a,x_1,x_2,x_3 and $v_1 v_2 v_3 v_4 v_5$ with each

 a_1 (i=1,2,3,4,5) ≥ O, Σ $a_1 < 1, k ≥ 1$ (k is an integer). i=1

Then T_1 and T_2 have a unique common fixed point in X.

<u>Proof:</u> Let v be any member of V and p the Minkowaki's pseudo 2-metric of v. Put $P(x, T_1^k(x_1), a) = r_1 : p(y, g k(x_2), a) = r_2 : p(T_1(x), T_1^k(z_3), a) = r_3$ $P(T_2(y), T_1^k(z_3), a) = r_4 : p(x, y, a) = v_5$. For any $\varepsilon > o$,

We have, $(x, T_1^{k}(x_1), a) \epsilon (r_1 + \epsilon) v : (y, T_2^{k}(z_2), a) \epsilon (r_2 + \epsilon) v$

 $(T_1(x), T_2^{\ k}(x_3), a) \epsilon (r_3 + \epsilon) v : (T_1(y), T_1^{\ k}(z_3), a) \epsilon (r_4 + \epsilon) v (x, y, a) \epsilon (r_5 + \epsilon) v$. Then by the given condition $(T_1(x), T_2(y), a) \epsilon a_1 (r_1 + \epsilon) v \circ a_2 (r_2 + \epsilon) v \circ a_3 (r_3 + \epsilon) v \circ a_4 (r_4 + \epsilon) v \circ a_5 (r_5 + \epsilon) v$. Then by lemma (1.1.10) and since ϵ is arbitrary, thus

For arbitrary z,w ε x, Put x = $T_2^k(z)$, y = $T_1^k(w)$,

$$\begin{split} X_1 &= w, \, z_2 \,\,\%, \, z_3 = g \,(w) \,\, in \,\, (1) \,\, we \,\, get \\ P(T_1(T_2^{\ k}(\%)), \, T_2(T_1^{\ k}(w), a) &\leq \, a_1 \,\, p(T_2^{\ k}(z), \, T_1^{\ k}(w), a) \\ &+ a_2 \,\, p(T_1^{\ k}(w), \, T_2^{\ k}(z), \, a) \\ &+ \, a_3 \,\, p \,\, (T_1^{\ k}(T_2^{\ k}(z), \, T_1^{\ k}(T_2(w)), \, a) \\ &+ \, a_4 \,\, p \,\, (T_2 T_1^{\ k}(w), \, T_1^{\ k}(T_2(w)), \, a) \\ &+ \, a_5 \,\, p \,\, (T_2^{\ k}(z), \, T_1^{\ k}(w), \, a) \end{split}$$

i.e. $p(T_1, T_2^{k}(z), T_2 T_1^{k}(w), a) \le a p(T_2^{k}9z), T_1^{k}(w), a)$ (2)

Where a = $\frac{a_2 + a_2 + a_5}{1 - a_3} < 1$

Let $x_0 \in X$ be arbitrary, We define a sequence $\{x_n\}$ as foolows

$$\chi_n = \begin{cases} T_1(X_{n-1}) \text{ If n is odd} \\ T_2(X_{n-1}) \text{ If n is even} \end{cases}$$

Now as proved in earlier theorems we can show that $\{x_n\}$ is a Cauchy sequence and since x is sequentially complete Hausdorff space there exists a point $u \in X$ such that u = x

 $n \xrightarrow{Lt} x_n$. For any positive integer h, we have $\rightarrow \infty$

$$\begin{split} P(u, T_2(u), a) &\leq p(u, T_2(u), x_n) + p(u, x_h, a) + p(x_h, T_2(u), a) \\ &= p(u, T_2(u), X_h) + p(u, x_h, a) + p(T_1(X_{h-1}), T_2(u), a) \end{split}$$

Taking $x = x_{h-1}$, y = u, $x_1 = T_2^{k}(x_{h-1})$, $Z_2 = T_1^{k}(x_{h-1})$ in (1) and using the above inequality we get

$$\begin{split} P(u, T_2(u)a) &\leq p(u, T_2(u), x_h) + p(u, x_h, a) + \\ &a_1 p (x_{h-1,} T_1^K T_2^K (x_{n-1}), a + \\ &a_2 p(u, T_2^K T_1^K (x_{n-1}), a + \end{split}$$

 $\begin{array}{l} a_{3} \ p(T_{1}, \ x_{n-1}, \ T_{1}^{\ k}T_{2}^{\ k}(x_{n-1}), \ a) + \\ a_{4} \ p \ (T_{2} \ (u), \ T_{1}^{\ k} \ T_{2}^{\ k}(x_{n-1}), \ a) + \\ a_{5} \ p(x_{n-1}, \ u, \ a) \\ \leq p(u, \ T_{2}(u), \ x_{h}) + p(u, \ x_{h}, \ a) + a_{1} \ p \ (x_{h-1}, \ x_{h+2 \ k-1}, \ a) \\ + \ a_{2} \ p \ (x_{h-1}, \ x_{h+2k-1}, \ a) + a_{3} p(x_{h}, \ x_{h+2k-1}, \ a) \\ + \ x_{4} \ p(T_{2}(u), x_{h+2k-1}, \ a) + a_{5} p(x_{h-1}, \ u, \ a) \end{array}$

When $h \rightarrow \infty$, x_h , x_{h-1} , x_{h+2k-1} all tends to u.

Thus, $p(u,T_2(u),a) \le p(u,T_2(u),u) + p(u, u, s) + (a_1 + a_2 + a_3 + a_5) p(u,u,a) + a_4p(T_2(u), u, a)$ a) i.e. $(1-a_4) p(u,T_2(u),a) \le O$ which gives

 $p(u, T_2(u), a) = O$, Hence $(u, T_2(u), a) \in v$.

As v being arbitrary and X being a Hausdorff speace, we have $u = T_2(u)$. Similarly $u = T_1(u)$. Thus, u is a common fixed point of T_1 and T_2 . To prove that u is the unique common fixed point of T_1 and T_2 . To prove that u is the unique common fixed point of T_1 and T_2 . To prove that u is the unique common fixed point of T_1 and T_2 . To prove that u is the unique common fixed point of T_1 and T_2 . To prove that u is the unique common fixed point of T_1 and T_2 . Let $u_0 \neq u$ be another point such that $T_1(u_0) = T_2(u_0) = u_0$ giving $p(u, u_0, a) = p(T_1(u), T_2(u_0), a)$. Taking $x = u = z_2$ and $y = u_0 = z_1 = z_3$ in (1) we get the desired result.

(7.2.4) <u>THEOREM:</u> Let f and g be two operators such that

- (i) f,g maps X into itself
- (ii) f, g = g.f
- (iii) for all x,y,x₁, x₂, z₃, z₄ ε X and for each a ε x and each p ε p any four members v_1, v_2, v_3, v_4 , in v (f(x), g(y), a) ε a₁ v_1 o a₂ v_2 o a₃ v_3 o a₄ v_4 .

If $(x, f^{k}(x_{1}), a) \in v_{1} : (y, g^{k}(x_{2}), a) \in v_{2} :$ (f(x), $f^{k}(x_{3}), a) \in v_{3} : (g(y), f^{k}(x_{4}) \in v_{4}$, where each a_{1} (I = 1,2,3,4) are independent of x,y,a,z_{1},z_{2}, z_{3}, z_{4}

and $v_1, v_2, v_3, v_4, a_1 \ge 0$ for each i = 1,2,3,4 and 4

 Σ a₁ < 1, k ≥ 1 (k is an integer).

```
i = 1
```

Then f and £ have a unique common fixed point in x.

<u>Proof:</u> Suppose v be any member of V and p the Minkowaki's paeudc 2 – metric of v. Put $p(x, f^{k}(z_{1}), a) = r_{1} : p(y, g^{k}(z_{2}), a) = r_{2}$

 $P(f(x), f^{k}(z_{3}), a) = r_{3} : p(g(y), g^{k}(z_{4}), a) = r_{4}.$

Now for any $\varepsilon > O$, we have

 $\begin{array}{l} (x,\,f^k(z_1),\,a)\,\epsilon\,(r_1+\epsilon)\,v\,;\,(x,\,g^k(z_2),\,a)\,\epsilon\,(r_2+\epsilon)\,v,\\ (f(x),\,f^k(x_3),\,a)\,\epsilon\,(r_3+\epsilon)\,v;\,(g(y),\,g^k(z_4),a)\,\epsilon\,(r_3+\epsilon)\,v \end{array}$

Thus by given condition we have

(f(x), g(y), a) ε a₁ (r₁ + ε) v o a₂(r₂ + ε) v o a₃ (r₃ + ε) v o a₄ (r₄ + ε) v Then by lemma (1.1.10) and since ε is arbitrary, we have

 $P(f(x), g(y), a) \le a_1 p(x, f^k(z_1), a), a_2 p(y, g^k(z_2), a), a_3 p(f(x), f^k(z_3), a) + a_4 p(g(y), g^k(z_4), a)$(1)

Now for the arbitrary x,w ε X, put

$$X = g^{k}(z), y = f^{k}(w), z_{1} = w, z_{2} = z, z_{3} = g(w), \text{ then we have}$$

$$P(fg^{k}(z), gf^{k}(w), a) \leq a_{1} p (g^{k}(z), f^{k}(w), a)$$

$$+ a_{2} p (f^{k}(w), g^{k}(w), a)$$

$$+ a_{3} p(fg^{k}(z), f^{k}(w), a)$$

$$+ a_{4} p(gf^{k}(w), g^{k}f(w), a)$$

$$\leq ap(g^{k}x), f^{k}(w), a) \dots \dots \dots \dots \dots (2)$$
Where $a = \frac{a_{1} + a_{2}}{1 - a_{3} - a_{4}}$

Let x_o be arbitrary, Define a sequence $\{x_n\}$ as follows

 $X_{n} = \begin{cases} f(\mathbf{x}_{n-1}) when \ n \ is \ odd \\ g(\mathbf{x}_{n-1}) when \ n \ is \ even \end{cases}$

In view of given condition (ii) we observe that

 $X_{2n} = f^n g^n (X_o)$ and $x_{2n+1} = f^{n+1} g^n(x_o)$. Let n > t

Which gives n = t + g for some integer q > 1, then proceeding as in previous theorem we have

 $P(x_{2n}, x_{2n+1+,} a) \ \leq a^{2n-2t} \ p(X_{2t}, X_{2t+1}, a)$

Now for m > n > t then again proceeding similar to the previous theorem we can show that $\{x_n\}$ is a Cauchy sequence. Since x is sequentially complete Hausedorff

Space, there exists $u \in X$ such that $u = n \xrightarrow{Lt} x_n$.

For any odd positive integer h, we have

$$P(u, g(u), a) \le p(u, g(u), x_h + p(u, x_h, a) + p(x_h, g(u), a)$$

= p(u,g(u), x_h) + p(u,x_h,a) p(f(x_{h-1}), g(u),a)

Taking
$$x = x_{h-1}$$
, $y = u$, $z_1 = g^k(x_{h-1})$, $z_2 = f^k(x_{h-1})$.

In (1) and using the above inequality we get

$$\begin{split} \mathsf{P}(\mathsf{u},\,\mathsf{g}(\mathsf{u}),\,\mathsf{a}) &\leq \mathsf{p}(\mathsf{u},\,\mathsf{g}(\mathsf{u}),\,\mathsf{x}_{\mathsf{h}} + \mathsf{p}\,(\mathsf{u},\,\mathsf{x}_{\mathsf{h},\,\mathsf{a}}) + \mathsf{a}_{1}\,\mathsf{p}(\mathsf{x}_{\mathsf{h}-1},\,\mathsf{f}^{\mathsf{k}}\,\mathsf{g}^{\mathsf{k}}(\mathsf{x}_{\mathsf{h}-1}),\,\mathsf{a} \\ &+ \mathsf{a}_{2}\,\mathsf{p}(\,\mathsf{u},\,\mathsf{g}\,\mathsf{g}^{\mathsf{k}}\,\mathsf{f}^{\mathsf{k}}\,(\mathsf{x}_{\mathsf{h}-1}),\,\mathsf{a}) + \,\mathsf{a}_{3}\mathsf{p}(\mathsf{f}(\mathsf{x}_{\mathsf{h}-1})\,,\,\mathsf{f}^{\mathsf{k}}\,\mathsf{g}^{\mathsf{k}}((\mathsf{x}_{\mathsf{h}-1}),\,\mathsf{a} \\ &+ \mathsf{a}_{4}\,\mathsf{p}\,(\mathsf{g}\,(\mathsf{u}),\,\mathsf{g}^{\mathsf{k}}\,\mathsf{f}^{\mathsf{k}}\,(\mathsf{x}_{\mathsf{h}-1}),\,\mathsf{a}) \\ &= \mathsf{p}\,(\mathsf{u},\mathsf{g}(\mathsf{u}),\,\mathsf{x}_{\mathsf{h}}) + \mathsf{p}(\mathsf{u},\,\mathsf{x}_{\mathsf{h}},\,\mathsf{a}) + \mathsf{a}_{1}\,\mathsf{p}(\mathsf{x}_{\mathsf{h}-1},\,\mathsf{x}_{\mathsf{h}+2\mathsf{k}-1},\,\mathsf{a}) \\ &+ \mathsf{a}_{2}\,\mathsf{p}(\mathsf{u},\,\mathsf{x}_{\mathsf{h}+2\mathsf{k}-1},\,\mathsf{a}) + \mathsf{a}_{3}\,\mathsf{p}(\mathsf{x}_{\mathsf{h},\,\mathsf{x}_{\mathsf{h}+2\mathsf{k}-1},\,\mathsf{a}) \\ &+ \mathsf{a}_{4}\,\mathsf{p}\,(\,\mathsf{g}(\mathsf{u}),\,\mathsf{x}_{\mathsf{h}+2\mathsf{k}-1},\,\mathsf{a}) \end{split}$$

Then $h \to \infty$, x_h , x_{h-1} , x_{h+2k-1} all tends to u.

Therefore $p(1-a_4)$ $p(u, g(u), a) \le O$ which implies

That p(u, g(u), a) = O. Hence $(u, g(u), a) \in v$.

Since v is arbitrary and X is a Hausdorff space.

Therefore, we have u = g(u). Similarly u = f(u).

Thus u is the common fixed point of f and g. For the uniquences of u. Let $\overline{u} \neq u$ be such that

 $f(\overline{u}) = g(\overline{u}) = (\overline{u})$. On putting $x = u = z_2 = z_4$

and $y = \overline{u} = z_1 = z_3$ in (1) the desired result follows.? //

(7.2.5) <u>THEOREM</u>: Let f and g be two operators such that

- (i) f, g map x into itself
- (ii) f.g = g, f

(iii) for all x,y,z₁,z₂,z₃,z₄, ε X and for every a ε X and each p ε P, any ten members $v_1, v_2, v_3 \dots v_{10}$ in v

 $(f(x), g(y),a) \\ \epsilon \\ a_1 \\ v_1 \\ o \\ a_2 \\ v_2 \\ o \\ a_3 \\ v_2 \\ o \\ a_3 \\ v_3 \\ o \\ a_4 \\ v_4 \\ o \\ a_5 \\ v_5 \\ o \\ a_6 \\ v_6 \\ o \\ a_7 \\ v_7 \\ o \\ a_8 \\ v_8 \\ o \\ a_9 \\ v_9 \\ o \\ a_{10} \\ v_{10} \\$

If $(x, f^{k}(z_{1}), a) \in v_{1} : (y, g^{k}(z_{2}), a) \in v_{2} : (f(x), f^{k}(z_{3}), a) \in v_{3} (g(y), g^{s}(z_{4}), a) \in v_{4} : (x, g^{s}(z_{2}), g(y), a) \in v_{5} : (x, y, a) \in v_{6} : (f(x), g^{s}(z_{4}), a) v_{7} : (f^{k}(z_{3}), g(y), a) \in V_{8} : (f^{k}(x_{3}), g^{s}(z_{4}), a) \in v_{9} (g, f^{k}(z_{1}), a) \in v_{10}.$

Where each a_1 ($1 = 1, 2, \dots, 10$) are independent of

X,y,a, z_1 , z_2 , z_3 , z_4 and v_1 's (I = 1,210)

With each a $_1 \ge 0$ (i = 1,2,10), $\sum_{i=1}^{10} a_1 < 1$ and s,k ≥ 1 .

Then f and g have a unique common fixed point in X.

<u>Proof:</u> Let v be any member of V and p is the Minkowski's pseudo -2 – metric of v. Write P(x,f^k(x₁), a) = r₁ : p (y,g^s(z₂), a) = r₂ :

 $P(x, I (x_1), a) = r_1 : p(y, g(z_2), a) = r_2 :$ $P(f(x), f^k(x_3), a) = r_3 : p(g(y), g^s(z_4), a) = r_4 :$ $P(x, g^s(z_5), a) = r_5 : p(x, y, a) = r_6 : p(f(x), g^s(z_4), a) = r_7 :$ $P(f^k(z_3), g(y), a) = r_8 : p(f^k(z_3), g^s(z_4), a) = r_9 :$ $P(y, f^k(z_1), a) = r_{10}.$

For any arbitrary $\varepsilon > o$, we have $(x, f^k(z_1), a) \varepsilon (r_1 + \varepsilon) v$;

 $\begin{array}{l} (y,g^{s}(z_{2}), a) \ \epsilon \ (r_{2}+\epsilon) \ v \ ; \ (f(x), \ f^{k}(r_{3}), a) \ \epsilon \ (r_{3}+\epsilon) \ v \ ; \\ (g(y), \ g^{s} \ (z_{4}), a) \ \epsilon \ (r_{4}+\epsilon) \ v \ ; \ (x,g^{s}(z_{2}), a) \ \epsilon \ (r_{5}+\epsilon) \ v \ ; \\ (x,y,a) \ \epsilon \ (r_{6}+\epsilon) \ v \ ; \ (f(x), \ g^{s}(z_{4}), a) \ \epsilon \ (r_{7}+\epsilon) \ v ; \\ (f^{k}(z_{3}), \ g(y), \ a) \ \epsilon \ (r_{8}+\epsilon) \ v \ : \ (f^{k}(z_{3}), \ f^{8}(z_{4}), \ a) \ \epsilon \ (r_{9}+\epsilon) \ v : \\ (y, \ f^{k}(z_{1}), \ a) \ \epsilon \ (r_{10}+\epsilon) \ v . \ Thus \ from \ given \ condition \end{array}$

We have

$$(f(x), g(y), a) \varepsilon a_1 (r_1 + \varepsilon) v o a_2 (r_2 + \varepsilon) v o a_3 9r_3 + \varepsilon) o a_4((r_4 + \varepsilon) v o a_5 (r_5 + \varepsilon) v o a_6 (r_6 + \varepsilon) v o a_7 (r_7 + \varepsilon) v o a_8 (r_8 + \varepsilon) v o a_9 (r_9 + \varepsilon) v o a_{10} (r_{10} + \varepsilon) v.$$

Now by lemma (1.1.10) and since ε is arbitrary, thus we have

$$\begin{split} p(f(x), g(y), a) &\leq a_1 \ p(x, f^k(x_1), a) + a_2 \ p(y, g^s)(x_2), a) \\ &+ a_3 p(f(x), \ f^k(z_3), \ a) + a_4 \ p(g(y), \ g^s(z_4), \ a) + \\ &+ a_5 p(x, g^s(x_2), a) + a_6 \ p(x, y, a) + \\ &+ a_7 \ p(f(x), \ g^s(z_4), \ a) + a_8 \ p(f^k(z_3), \ g(y), a) \\ &+ a_9 \ p(f^k(z_3) \ g^s(z_4), \ a) + a_{10} p(y, \ f^k(x_1), \ a) \qquad \dots \dots \dots \dots (1) \end{split}$$

For arbitrary x,w in X, Put $x = g^{s}(z)$, $y = f^{k}(w)$,

$$\begin{aligned} + a_{7} p(f(x), g^{s}(z_{4}), a) + a_{8} p(f^{*}(z_{3}), g(y), a) \\ + a_{9} p(f^{k}(z_{3}) g^{s}(z_{4}), a) + a_{10}p(y, f^{k}(x_{1}), a) \end{aligned}$$
For arbitrary x,w in X, Put x = g^s (z), y = f^k(w),
X₁ = w, z₂ = z, z₃ = g(w), z₄ = f(z) in (1) we get
P(f(g^s(z), g(f^k(w)), a) \le a_{1}p(g^{s}(z), f^{k}(w), a) +
+ a_{2} p(f^{k}(w), g^{s}(z), a)
+ a_{3} p(f(g^{s}(z), f^{k}(g)), a) +
+ a_{5} p(g^{s}(z), f^{k}(g)), a) +
+ a_{6} p(g^{s}(z), f^{k}(g)), a) +
+ a_{6} p(g^{s}(z), f^{s}(y), a) +
+ a_{7} p(f(g^{s}(z)), g^{s}(f(z)), a) +
+ a_{9} p(f^{k}(g(w)), g^{s}(f(z)), a) +
+ a_{10} p(f^{k}(w)), a) +
+ a_{10} p(f^{k}(w), f^{k}(w), a) +
+ a_{10} p(f^{k}(w), f^{k}(w), a) +
(i.e. p(f(g^{s}(z)), g(f^{k}(w)), a) \le \left(\frac{a_{1} + a_{2} + a_{6}}{1 - a_{3} - a_{4} - a_{5}}\right) p(g^{s}(z), f^{s}(w), a)
$$\leq a p(g^{s}(z), f^{k}(w), a) \dots (2)$$
Where $a = \frac{a_{1} + a_{2} + a_{6}}{1 - a_{3} - a_{4} - a_{9}} < 1$

Let $x_0 \in X$ be arbitrary. Consider the sequence (x_n) as follows:

 $X_{n} = \begin{cases} f(x_{n-1}) \text{ when n is odd} \\ g(x_{n-1}) \text{ when n is even} \end{cases}$

In view of condition (ii) we observe that

$$X_{2n} = f^n g^n (x_o)$$
 and $x_{2n-1} = f^{n+1} g^n (x_o)$

Let n > q which gives n = q + 1, for some integer I > 1

We have $p(x_{2n}, x_{2n+1}, a) \le a^{2n-2q} p(x_{2q}, x_{2q+1}, a)$

Now, for m > n > q, we can show that $\{x_n\}$ is a Cauchy sequence by similar process as done in previous theorem. Since X is sequentially complete Hausdorff space. Therefore

exists a number u ε X such that $n \underset{\rightarrow \infty}{Lim} x_n = u$. For any positive integer h we have

$$P(u, g(u), a) \le p(u,g(u), x_h) + p(u, x_h, a) + p(x_h, g(u), a)$$

$$= p(u,g(u), x_h) + p(u,x_h,a) + p(f(x_{n-1}), g(u), a)$$

Now taking $x = x_{h-1}$, y = u, $z_1 = g^a(x_{h-1}) = z_3$.

 $X_2 = f^k(x_{h-1}) = x_4$ in (1) and using in the above

Inequality we have

 $P(u,g(u), a) \le p(u,g(u), x_h) + p(u, x_h, a) +$ $+ a_1 p(x_{h-1}, f^k(g^s(x_{h-1})), a)$ $+a_2 p(u, g^{s}(f^{k}(x_{h-1})), a) +$ $+ a_3 p(f(x_{h-1}), f^k(g^s(x_{h-1})), a) +$ $+ a_4 p(g(u), g^{s}(f^{k}(x_{h-1})), a) +$ $+ a_5 p(x_{h-1}, g^{s}(f^{k}(x_{h-1})), a) +$ $+ a_6 p(x_{h-1}, u, a) +$ $+a_7 p(f(x_{h-1}), g^s(f^k(x_{h-1})), a) +$ $+ a_8 p (f^k(g^s(x_{h-1})), g(u), a)$ $+ a_9 p(f^k(g^s(x_{h-1})), g^s(f^k(x_{h-1})), a) +$ $+ a_{10} p (u, f^{k}(g_{s}(x_{h-1})), a)$ $= p(u,g(u), x_h) + p(u,x_h,a) + a_1 p(x_{h-1}, x_{h+k+s-1}, a)$ $+ a_2 p(u, x_{h+k+s-1}, a) + a_3 p(x_h, x_{h+k+s-1}, a) +$ $+ a_4 p(g(u), x_{h+k+s-1}, a) + a_5 p(x_{h-1}, x_{h+k+s-1}, a)$ $+ a_6 P(x_{h-1}, u, a) + a_7 p(x_{h}, x_{h+k+s-1}, a) +$ $+ a_8 p9x_{h+k+s-1}, g(u), a) + a_{10}p(u, x_{h+k+s-1}, a)$

Then $h \rightarrow \infty$, x_h , x_{h-1} , $x_{h+k+s-1}$ all tends to u.

Thus we have

 $p(u,g(u), a) \leq p(u,u,a) + p(u,u,a) + a_1 p(u,u,a) + a_2 p(u,u,a) +$

 $a_3 p(u,u,a) + a_4 p(g(u),u,a) + a_5 p(u, u, a) + a_6 p(u, u, a) + a_7 p(u, u, a) + a_8 p(u, g(u), a) + a_{10} p(u, u,a) +$

i.e., $(1-a_4 - a_8) p(u, g(u), a) \le O$ which gives

 $p(\mathbf{u}, \mathbf{g}(\mathbf{u}), \mathbf{a}) = \mathbf{O} \text{ as } \sum_{i=1}^{10} a_i < 1 \text{ and } p(\mathbf{u}, \mathbf{g}(\mathbf{u}), \mathbf{a}) \dots \mathbf{O}.$

Hence, $(u, g(u), a) \in v$.

Since v being arbitrary and X being Hausdorff space, we have u = g(u). Similarly u = f(u). Thus us is the common fixed point of f and g. For the uniqueness of u, let $u_0 \neq u$, be a point such that $f(u_0) = g(u_0) = u$. On putting $x = u = x_2 = z_4$ and $y = u_0 = x_1 = z_3$ in (1) we get the desired result. //

Remarks;

- If we put p = {d} without 2 uniform space, Theorem 1.2.1 gives theorem of Lal and Singth [34].
- (2) If we put p = {d} without 2 uniform space, Theorem 1.2.2 to Theorem 1.2.5 give extended form of results of Das and Sharma [11]. Singh and Singh [55(b)] etc. in 2 metric space.

REFERENCES:

(1).Dubey,R.P., Pathak,H.K, and Dubey,B.N.: A fixed point for weak ^{**} commutating mappings. Bull. Cal. Math. Soc. 83 (1991) 239 – 246.

(2)Hadzic Olga: On common fixed point theorem in 2- metric spaces. Review of Research Faculty of Science University of Novisad. Vol.12 (1982).

(3).Kubaik Tomas: Common fixed points of pairwise commutating mappings. Math. Nachr. 118 (1984) 123 – 121.

(4).Pathak, H.K: On fixed poind of weak^{**} commutating mappings in compact metric spaces. Bull. Cal. Math. Soc. (83) 1991, 203 – 208.

(5).Pathak, H.K. and Sharma, R.: Extension of fixed point theorems of Diviecaro, Sessa and Fisher. Bull. Of pure and appl. Sciences Vol.11 E (1-2) 1992, 9 - 15

(6)Sessa, S.: On a weak commutativity condition of mappings in a fixed point consideration. Publ. Inst. Math. 32 (46) 1982, 149 – 153,

(7).Nageswara Rao, B: Fixed Point Theorems through Rational Expression International eJournal of Mathematics and Engineering Vol.2:issue.2,166 (2012) 1555 - 1581

(8).Nageswara Rao, B: Fixed Point Through Contractive and Pseudo Contractive Mappings; International eJournal of Mathematics and Engineering. Vol.2:issue.2168 (2012) 1588 – 1597

(9)Nageswara Rao, B: Fixed Points of Mappings Satisfying Semi-Contractivity Conditions; International Journal of Mathematical Sciences, Technology and Humanities Vol.2:issue.2, 40 (2012) 398 – 407