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1. INTRODUCTION: 
 

In this paper we have introduced contraction type mappings in 2 – Uniform spaces 
and them some fixed point theore  as have been proved in 2 – uniform space.  Our results 
generalizes the results of many authors such as Lal and Singh [3], Das and Sharms [1] 
Singh and Singh [5] etc. 
 
1.1 PRELIMINARIES: 
  In  this section we shall do some definitions and  lemmas.  

1.1 DEFINITION:  A Pseudo – 2 – Metric   p for a set X in a real valued function 
defined on X x X x X, such that for all a,b,c,d, € X, we have  
(i) p(a,b,c) > O and p(a,b,c) ..  O.  If at least two of a.b.c are equal. 
(ii) p(a,b,c) = p(b,c,a) = p(c,a,b) = ….. so on. 
(iii) p(a,b,c) ≤ p(a,b,d) + p(a,d,c) + p(d,b,c). 

 A set X together with a pseudo 2  - metric P Is called  pseudo – 2 – metric space 
(X,p). 
 
(1.1.2) DEFINITION: A 2 – uniformity for a set X is a non void family .. of subsets of  
X x X x X  such that  
 
(u1) each member of …. Contains the diagonal   of X3,  = [(x,x,x) : x  X} 
(u2) If  u  … then  vo vo v  u for some v in …. 
(u3) If u and v are members of … then u  v  ….. 
(u4) If u  ………… and u   v   X3 then v  ……. 
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  By 2- uniform space, we mean a set X endowed with 2 – uniformity … in 
X, written as (x,….) 
 
(1.1.3) EXAMPLE:   Every 2 – metric space (X,d) is 2 – uniform space. 
 
(1.1.4)  DEFINITION: If (x, ….) is a 2 – uniform space, then a subject …. Of … will 
be called a basis for ( x, ….) 
 
(i) if x  X and u  …… , then (x,x,x)  …. 
(ii) if u  …, then  u-1 contains a member of …… 
(iii) If  u  ………, then vo vo v   u for some v in ……… 
(iv) for each u  …. And v  …… there is a  w  ……….. in which w  u  v. 

(7.1.5) DEFINITION:  A net   : D   X in a space X is  said to converge to a point x  
X iff    is eventually in every neighbourhood of p. 

 
DEFINITION: By Cauchy net  (or fundamental net) in a 2 – uniform space (X, ……), we 
mean a net   : D    X in the space X such that for an arbitrary member u of there exists 
a residual subset  B of D satisfying (  (a),   (b), c)  …… , for any three members a,b 
and  c of E. 
 
(7.1.6)  DEFINITION:   2 – uniform space (x, ……) is called  
Sequentially complete if every Cauchy sequence in X converge to a point in X. 

Now, for any  pseudo – 2 – metric p on any r  O, we write 

V(p,r) = { (x,y,z) : x,y,z  X and p(x,y,z)  r } 
Let P be a family of pseudo – 2 – metrics on X 

Generating the uniformity. Denote V the family of all  

Sets of the form    
 11

n


 V (p1, r1), where P1  P and  

r1 O, 1 = 1,2 ………. N (the integer is  not fixed). Then clearly V is a base for the 
uniformity ……. 

Let V   V, then v =  
 11

n


 V (p1, r1), where 

P1  P and  r1 > O,  1 =1,2 ……………….. n, For each   O1,  

The set 
n

 11
  V(P1, r1), belongs to V we denote this set by  v. 
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(1.1.8) LEMMA:  If v  V and ,  are positive 
Then ( v)  = (a ) v. 

(1.1.9)  LEMMA:  If v  V and ,  are positive 
 Then  v    v  where   . 

(1.1.10) LEMMA:  Let p be any pseudo - … - metric on Ä  
   And ,p be any two positive numbers, If (x,y,z) 

  v (p,r1) o  v (p, r2) then 
P(x,y,z) <  r1 +  r2. 

 
(1.1.11) LEMMA: If v  V and ,  are positive, 

Then vO  v   ( + ) v. 

(1.1.12) NOTE: Let p be any pseudo – 2 – metric an  x and , , be three positive 
numbers. 

 
If (x,y,z)   v (p,r1)   (p,r2) (p,r3). 
Than p(x,y,z)   r1 + r2 +  r3 

(1.1.13) LEMMA: Let x,y,z  X, then for every v in v there is a positive number  such 
that (x,y,z)   v. The proofs of  …. 1.1.8 – 1.1.13 are simple hence we omit here. 
 
(1.1.14) LEMMA: Let v be any member of V. Then there is a pseudo – 2 – metric p on 
X, s,t. v = V(p,l). 
 
Proof:  Let (x,y,z) be any three points of X, The by lemma (1.1.15) there is a    such 
that  (x,y,z)   ,   write  A(x,y,z) = {  :    and (x,y,z)    ,  } 

 
Now we define p(x,y,z) by p(x,y,z) = Inf { :    (x,y,z) }. 

If x  X, then  clearly (X x X x X)  v for any  . 
This shows that A(x,x,x) = {      }. 

So p(x,x,x) = Inf A(x,x,x) = . Again since v is symmetric it follows that 

A(x,y,z) = A (y, z, x)  = A(z, x, y) = …………………. 

So, 
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 P(x,y,z) = p(z,x,y)  = p(y,z,x) = ………….    . 
Now Let x,y,z,a be any four points of X. Choose  >  
Arbitrarily, Tak   = p (x,y,a) + ,  
 
 = p ø(x,a, z)   and  = p (a, y, z)  +  
 
The,     A (x,y,a),   A (x, a,z) and   A (a,y,z) 
i.e (x,y,a)    v, (……….)    and (a,y,z)   v, 
 
This gives that (x,y,z)       o   v o  v =  v o  v o  v  ( ++ ) v ( by note 
1.1.12) 
 
Thus,  ()   A (x,y,z). 
So,  

P(x,y,z)  is        p (x,y,a) + p(x,a,z) + p(a,y,z) + 3  
Since    is arbitrarily, be get 

P(x,y,z) < p(x,y,a) + p(x,a,z)  + p(a,y,z) 
Thus, p is a pseudo  - 2 metric on X. 

Let x,y,z  
...
  and p(x,y,z) < 1. Choose any  with  

p (x,y,z) <  < 1, Then   A (x,y,z) which gives that  

(x,y,z)   v  v. (By lemma 1.1.9).  So 
(I)   v(p,1)   V 

Again let (x,y,z)  V.  Since v  V. We can choose  

V = 
n

11
   v(p1, r1) , P1  P and r1 > O. 

Write 1 = P1 (x,y,z), then O    
1

1
r

a  x 1, (1 = 1,2,….n) 

Let   = max,   








 n
r
a ..........2,11,

 1

1 . Then O        1. 

Choose any  positive a with   <  < 1, we have  

P1 (x,y,z) =  1 = 
1

1

r
a  r1   r1   r1  ( 1 = 1,2 …………….., n) 
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So, (x,y,z)  
11

n

 V(p1,r1) =   

And hence p(x,y,z)     1.  Thus 
(II)  V   V(p, 1), 

 From I and II, we get V = V(p,l). 
 
NOTE: We  shall call p-  Minkowski’s pseudo – 2 – Metric of V. 
 
(1.1.15) DEFINITION:  Let  be a basic for  the 2 – uniform 
Space(X,…..) and let  f be a function on  X into X, then 
 
(a) f is said to be a  contraction with respect to …… 
   If (f(x), f(y), z)  U whenever (x,y,z)  U  …. 

(b) f is said to be  expansion  with respect to ….. 
If (x,y,z)  U whenever (f(x), f(y), z)  U  ……. 

1.2  RESULTS OF  FIXED POINT OF OPERATIONS: 

In this section we assure that (x, ……) is a  2 – uniform space which is sequentially 
complete and also Hausdorif, Further we suppose that P is a fixed family of paseudo – 
2 – metric on X which generates the uniformity  ….We denote  the family of all sets 

the form  
 11

n


 V (p1, r1), P1  P and r1 > O. 

(the integer  n is not fixed). 
By an operator on X we mean a mapping of X into itself. 

(1.2.1)  THEOREM: Let  {S1, S2,………….. S
1 q } and { T1, T2 …………T

2 q } 
  Be two sets of operators such that 

(i) S1 (1  1  q1) and T
  (1    q2 ) all maps X into itself. 

(ii) T T   = T T  where 1      q2. 
(iii) For all x, y,  X and for every   X and each  

p   P , any five members V1, V2,V3, V4, V5 in V  
(S(x), T(y), ))  1 v1  2 2  3 v3  4 4,  5 v5 with 
S = S1 …… S

1q ; T = T1 ………… T
2q .  If 

(x, S(x), a)  V1, (y, T(x), a)  V2, (x, T(y), a)  V3 

(y, S(x), a)  V4, (x,y, )   V5, where each  
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1 ( 1 =1, 2,……….. 5) are non-negative real numbers 
Independent of x,y,, V1, V2, V3, V4,V5 such that  

(iv)  O  <   
  3 2

5 4 2

 3 2

 5 3 1

1
:

1 aa
aaa

aa
aaa





  <1,1 - 2 - 3 ,  1 - 1  - 4 .  

Then S1 ( 1 < I < q1) and T (1 <  < q2) all have a unique common fixed point. 

Proof:  From given condition (iv) we have 
1  + 2  + 3

 + 4 + 5 < 1 ……………….. (1) 

Suppose  K1 = :
a - 1

a 

 3 2

 53  1

a
aa


  K2 = )2.....(

a - 1
a 

 4 1

 5 4 2

a
aa


  

Let v be any member of  V and p be  the Mindowski’s  
2 pseudo 2 – retric of V. Consider x,y,a be any three  

Points of X. 
Put,  p(x, S9x), a) = r1  : p(y, T(y), a) = r2, 
P(x, T(y), a) = r3         : P(y, S(x), a) = r4

,, 
P (x,y,a) = r5 and take  > O, then 
(x, S(x), a)  (x1 + ) v, (y, T(y), a)  (r2 + ) V, 
(x, T(y), a)  (r3 + )v, (y, S(x), a)  ( r4 + ) v, 
(x,y,a)  (r5 + ) v. Then by given condition we have 
(S(x), T(y), a)  a1 (r1 + ) v o a2 (r2 + ) v o a3 (r3 + ) v o a4 (r4 + ) v o a3(r5 + ) v. 

Then by lemma (1.1.10), we get 

P(S(x), T(y), a) < a1(r1 + ) + a2(r2 + ) + a3 (r3 + )  + a4(r4 + ) + a3 (r5 + ) 
= a1 r1= + a2 r2 + a3 r3 + a4 r4 + a5 r5 + (a1 + a2 + a4 + a5)  
 
As  is arbitrary, we have 
 
p(S(x), T(y), a)  a1 p(x, S(x), a) + a2 p (y, T(y), a) + a3p (x, T(y),a) + a4 P(y, S(x),a) 

+ a5 p (x,y,a). 

We take any XO  X and construct a sequence {xh } in X by setting 

X2n+1 = S(x2’ n ) and x2n+2+ = Tx2n +  for n = o,1,2,………………..(3). 

Now, p(x2n-1, x2n’a) = p(S(x2n-2), T(x2n-1), a) 



International Journal of Mathematical Sciences, Technology and Humanities 49 (2012) 498 – 519 
B.Nageshwara Rao 

504 
 

  < a1 P (X2n-2), T(x2n-2), a) 
  + a2 p(x2n-1, T(x2n-1), a)  

+ a3, p(x2n-2, T(x2n-1), a) 
+ a4   p (x2n-1, T(x2n-1), a) 
+ a5 p(x2n-2, T(x2n-1), a) 
 

Hence, P(x2n-1, x2n, a) …… k1 p(x2n-2, T(x2n-1), a) 

 From (2) ……………………. (4) 

Now, p(x2n-1, x2n + 1, a)  = p(T(x2n-1), S( x2n),a) 

 = p(S( x2n), T(x2n-1),a) 
  a1 P (X2n, S x2n, a) 
 + a2 p(x2n-1, Tx2n-1,a) 

+ a3 p(x2n, Tx2n-1,a) 
+ a4 p(x2n-1, Sx2n,a) 
+ a5 p(x2n-1, x2n,a) 

i.e p(x2n, x2n-1,a)   k2 p(x2n-1, x2n,a) ………………………….. (5) 
 k1 k2 p(x2n-2, x2n-1,a) 
  
 k1

n k2
n p(xo,x1,a) …………….. (6) 

 
and   p(x2n+1, x2n+2,a)  k1 p (x2n, x2n+1,a) 
     k1 k1

n k2
n p(xo,x1,a) (from (6))  

2
12 n  ……………..(7) 

   = (1 + k1)  (k1 k2)  p(xo,x1,a) 
 
Therefore by repeated use of trainable inequality and of  Reduction formulas (6) and (7), 

we get 

P(Xm, Xm+n, a)   p(Xm,Xm+1, Xm+n) + p(Xm, Xm+1,a) 
  + p(Xm+1, Xm+2, Xm+n) + p(Xm+1, Xm+2,a) 
  + ……………………… + …………………… 
  + p(Xm+n – 2, Xm+n-1, Xm+n) + p(Xm+n-1, Xm+n,a) 
 
Now, p(x2n-1, x2n+1, a)= p(T(x2n-1), S(x2n), a) 
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   = p(S(x2n), T(x2n-1), a) 
    a1 p(x2n, Sx2n, a) 
   + a2 p(x2n-1, Tx2n-1, a) 
   + a3 p(x2n, Tx2n-1, a) 
   + a4 p(x2n-1, Sx2n-1, a) 

+ a5 p(x2n-1, x2n, a) 

i.e. p(x2n, x2n+1, a) K2 p(x2n-1, x2n, a) ………… (5) 
   k1 k2 p(x2n-2, x2n-1, a) 
  : 

 
  :  

 k1
n k2

n p(x0,x1,a) ………….. (6) 
 
And p(x2n+2, x2n+2,a)   k1 p(x2n, x2n+1, a) 
  : 
   
  : 
  : 
  : 

: 
  k1 k1

n k2
n p(xo, x1,a) (from (6))  

    
2

12 n  ……………..(7) 

  = (1 + k1) (k1 k2)   P(xo, x1,a) 

Therefore by repeated use of triangle inequality and of reduction formulas (6) and (7), we 
get 
 
P(xm, xm+n, a)  p (xm, xm+1, xm+n) + p(xm, xm+1, a)-  
  +p(xm+1, xm+2 xm+n) +p(xm+1, xm+2,a) 
  + …………………. + ……………….. 
  + p(xm+n-2, xm+n-1,  xm+n) + p(xm+n -1, xm+n, a) 
 
Now we show that p(xm , xm+1, xm+2) = O. 

p(xm+1, xm+2, xm) = p(Sxm, Txm+1, xm) 
   a1p (xm, Sxm, sxm) + a2(xm+1, Txm+1, xm) 
  + a3 p(xm+1, Txm+1, xm) a4p (xm=1, Sxm, xm) 
  + a5 p(xm, xm+1, xm) 
  = a1p(xm, xm+1, xm) + a2 p(xm+1, xm+2, xm) 
  + a3 p (xm, xm+1, xm) + a4 p(xm+1, xm+1, xm) 
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  + a5 p (xm, xm+1, xm) + a 
  = a1O + a2p (xm+1, xm+2, xm) + a3

O+ a4
O+ a5

O. 

(1- a2)    p(xm+1, xm+2, xm)  O which implies that  p (xm+1, xm+2, xm) = O. 
 
Now, we show that p(xo, x1, xm) = O for m = O,1,2,……….. 

This is true for m = O, and m = 1, Suppose now that it holds for every m in 2  m  k – 1. 
Then 
 
p(xo, x1, xk)  p(xo, x1, xk-1) + p(xo, xk-1, xk) + p( xk-1,x1,x..)  

        (1 +k1)( k1 k2) 2
1k  [ p(xo,xo, x1) + p(xo, x1, x1)] = O 

Hence p ((xo, x1, xm) = O 

Since p (xm, sxm+1, xm+n)  (1+k1) (k1k2)m/2 [p(xo, x1, xm+n)], 

It follows that p(xm, xm+1, xm+n) = o and thus 

P(xm, xm+n, a)  (1+k1) (k1k)m/2 +( k1k2) +  
2

1m  ……………………..   

   ……. ( k1k2)  2
2 nm  ] p(xo,x1, a) 

As k1k2  < 1 the R.H,S of the above inequality tends to zero as  n  , Hence (xn) is a 
Cauchy sequence. Since X is sequentially complete there is a point  … in x such that    u  
=   n  


tL  , Xn 

Now we show that u is a unique common fixed point of  s and T. Let v be any member of 
V and p be the Minkowski’s pseudo 2 – metric of v. For  any positive integer n,  we  have 
 
P(u, Su,a)  p(u,Su,x2n) + p(u,x2n,a) + p(x2n,,Su,a) 
 = p(u, ,x2n, a) + p(u, Su, x2n) + p(Tx2n-1, Su, a) 

 p(u, ,x2n, a) + p(u, Su, x2n) + a1 p(u,Su,a) 
+ a2P(x2n-1, Tx2n-1,a) + a3 p(u, Tx2n-1,a) 
+  a4P(x2n-1, Su, a) + a5 p(u, x2n,a) 
p(u,x2n, a) + p(u, Su, x2n) + a1 p(u, Su, a) 
+ a2 p(x2n-1, x2n+1,a) + a3 p(u, x2n, a) 
+ a4p(x2n-1, Su, a) + a3 p(u, x2n, a) 

When n  , as x2n u, x2n-1   u, x2n-1   u. 
    
 And thus 
 p(u, Su, a) = a1 p(u, Su, a) + a4 (u, Su, a) 
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 or, (1-a1 – a4) v ( u, Su, a)   O 
 i.e. p(u, Su, a) = O, So (u, Su, a)  v. 

v being arbitrary and X being  Hausdorix space. 
 
We have u = Su. Similarly, u = Tu. 

 For the uniqueness of u, let 


u   u is also fixed point common to both S and T such 

that S (


u ) = T(


u ) = 


u  giving p(u, 


u ,a) = p(Su, T


u ,a) 

   a1 p(u, Su, a)  + a2 p(


u , T(


u ), a) + a3 p(u,T, (


u ), a) + a4 p(


u , S(u),a) + a3 

p(u, 


u , a). 

i.e p(u, 


u ,a)  a1 p(u, u, a) + a2 p(


u ,


u ,a) + a3 p(u, 


u ,a) + a4 p (


u ,u ,a) + a5 p(u, 


u ,a) 

which gives p(u, 


u ,a)  O and thus  u = 


u . 
 
 Now we shall show that u is the unique common fixed point of S1 ( 1  1  q1) and 
T (1    q2). 
 
For S(u)  = u and S(S1(u)) = S1S(u) = S1 (u). 
 
i.e. S1(u) = u by the uniqueness of u as the fixed points of  S. Similarly T (u) = u. Finally 
we shall show that u is the only fixed point common to  
 
S1  (1  1  q1) and ….. (1    q2).  For if  u* were such a  point such that u* = u and 
S1(u*) = T (u*)  =  u* 

Then  p(u, u*, a) ….. p (S1 (u), T( u*), a) 
      …… p (S(u), T(u*), a) 
    a1 p(u, Su, a) + a2 p(u*, T u*, a) + 
   a3 p(u, T u*, a) + a4 p(u*, Su, a) + 
   a5 p (u, u*, a) 
 
Which gives p (u, u*,a) = O and so u = u*. // 
 
(1.2.2) THEOREM: Let T1 and T2 be two operators such that  

(i) T1 and T=2  map X into itself 
(ii) T1T2  = T2T1 

(iv) for  all x,y,z1, z2  X and each a  x and each   

   p  p any six members  v1, v2, v3,v4, v5, v6 in v 
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(T1(x), T2(y),a)  a1 v1 o a2v2 o a3 v3 o a4 v4 o a5 v5 o a6 v6  
If (x,T1

k(z1), a)  v1; (y, T2
k(z2),a)  V2; (x,T1

k(z2), a)  v3; 
(y, T1

k(z1),a)  v4; (T1
 k(x1), T2

 k(x2), a)  v5 and 
(x,y,a)  v6 where a1 ( i = 1, 2 ……………6) all are 

Independent of x,y,a, z1, z2 and v1, v2 …………….. v6 with 

a1   O for each  i = 1,2 ……………. 6 : 
6

1

i

 a1 < 1, k  1 (k is an positive integer) 

 Then T1 and T2 have a unique common fixed point. 

Proof:  Suppose v be any member of  v and p the Minkowski’s pseudo – 2 – metric of 
v – write. 

P(x,T1
k(z1), a) = r1  : p(y, T2

k(z2), a) = r2 
P(x, T2

k(z2), a) = r3  : p(y, T1
k(z1), a) = r4 

P(T1
k (z1), T2

k (z2), a) = r5  : p (x,y,a) = r6. 
 
For any  > O we have 

(x,T1
k(z1), a)  (r1 + ) v : (y, T2

k (z2),a)    (r2 +  )v 
(x, T2

k(z1), a)  (r3 + ) v : (y, T1
k (z1),a)    (r4 +  )v 

(T1
k(z1), T2

k(z2), a)   (r5 +  )v : (x,y,a)  (r6 + ) v. 
 
Then by given conditions 

(f(x), g(y), a)  a1(r1 + ) vo a2(r2 + ) v o a3(r3 + ) v o a4 (r4 + ) v o a5 (r5 + )  v o 
a6(r6 + ) v 

 
They by  lemma (1.1.10) and since  is arbitrary, we have  

P(f(x), g(y), a) < a1p (x,fk(x1), a) + a2 p(y,gk(z2)a) + 
a3p (x,gk(z2),a) + a4p(y,fk(z1),a) + 
a5p (fk(z1),gk(z2), a) + a6 p(x,y,a) ………….. (1) 

For arbitrary z and w in X put 

X = T2
k(x), y =  T1

k(w), x1 = w, x2 = x in (1) we get 
P(T(T2

k(x), T2(T1
K(w)),a) < a p(T2

k(z), T1
K(w),a) ……… (2) 

 (where a = a1 + a2 + a5 + a6 < 1) 

Let xo  X be arbitrary, Consider {xn} as follows: 
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xn 








even isn  when )(T
odd isn  when )(

1 2

1 1

n

n

X
XT

  

In view of the given condition (ii) we observe that 

X2n = T1
n T2

n (xo)  : x2n + 1  = T1
n+1 T2

n (xo) 

Let n > t which gives no = £ + g for some positive integer q > 1. 

P(x2n, x2n+1, a)  = p(T1
t+g T2

t+g (xo), T2
t+g T1

t+g-1(xo), a) 
   a p(T1

 t+g-1 T2
 t+g (xo), T2

t+g-1 T1
 t+g-1 (xo),a) 

      Using (2) 
  …………………………………………….. 
  …………………………………………….. 
   aq p(T1

 t T2
 t+g (xo), T2

t T1
 t+g-1 (xo),a) 

  =  aq p(T1
 t+g-1 T2

 t (xo), T2
t+g T1

 t (xo),a) 
  ………………………………………. 
  ………………………………………. 
   a2g p(t1

 t+1 T2
t (xo), T2

t T1
t (xo), a) 

i.e p(x2n, x2n+1, a)  a2n-2t p (x2t, x2t+1,a) 

Taking m > n > t, and preoceeding similarly to the previous theorem we can show that 

{xn} is a Cauchy sequence in X,  Since x is sequentially complete Housdorff 

space, there exits u   x such that    u = 
n

Lt n x . 

For any odd positive integer h, we have 

P(u, T2(u), a)  p(u,T2(u), xh)  + p(u,xh,a) + p(xh, T2 u, a) 

  = p(u, T2(u), xh) + p(u,xh,a) + p(T1(xh-1, T2(u), a) 

Taking x = xh-1 : y = u, z1 = T2
k (xh-1), Z2 = T1

k(xh-1) in  (1) 

And using the above inequality, we get 

P(u, T2(u), a)  p(u,T2(u), xh)  + p(u,xh,a) 

 + (a1 + a3)p (xh-1, xh+2k-1,a) 

 + (a2 + a4) (u,xh+2k-1,a) + a6p(xh-1, u, a) 

When h   xh, xh-1, xh+2h-2 all tends to u. 
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i.e. p(u, T2(u), a)  O. Thus p(u, T2(u), a)  v. 

v being an arbitrary and x being Hausdorff space. 

We have u = T2(u). Similarly we can show that u = T1(u). 

Thus u is a common fixed point of T1 and T2. To show that the uniqueness of u. Let 

u  
 



u

 is also a common fixed point of T1 and T2 such that   

      T1 















 . 2 uuTu  

For this we put x = u = z2 and y = 


u  = z in (1) and we get the desired result. // 

(7.2.3) THEORM: Let T1 and T2 be two operators such that  

(i) T1, T2 maps  X into itself 
(ii) T1, T2  =     T2 T1 
(iii) For all x,y,z, z2, z3 in  < and for each a  X and each p  P, any  five members 

v1,v2,v3,v4,v5 in v. 
(T1(x), T2(y), a)   a1v1 o a2 v2 o a3 v3 o  a4 v4 o a5 v5 

If (x, T1
k (z1),a)  v1 : (y, gk(x2), a)  v2 : 

(T1(x), T1
k(X3),a)  v3 : (T2(y), T1

k(z3),a)  V4 : (x,y,a)  V5 where each a1 (i=1,2,3,4,5) 

are independent of  x,y,a,x1,x2,x3 and v1 v2  v3  v4  v5  with each 

a1 (i=1,2,3,4,5)  O,   
1

5




i
   a1 < 1, k  1 (k is an integer). 

 Then T1 and T2 have a unique common fixed point in X. 
 
Proof: Let v be any member of V and p the  Minkowaki’s pseudo 2-metric of v.  Put 
 P(x, T1

k (x1), a) =  r1 : p(y, g k (x2), a) = r2 : p(T1(x), T1
k (z3), a) = r3 

P(T2(y), T1
k(z3), a) = r4 : p(x,y,a) = v5. For any  > o, 

We have, (x, T1
k (x1), a)   (r1 + ) v : (y,T2

k (z2), a)  (r2 + ) v 
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(T1(x), T2
k(x3), a)  (r3 + ) v : (T1(y), T1

k(z3),a)  (r4 + ) v (x,y,a)  (r5 + ) v. Then by 
the given condition 
(T1 (x), T2(y),a)  a1 (r1 + ) v o a2 (r2 + ) v o a3 (r3 + ) v o a4 (r4 + ) v o a5 (r5 + ) v. 
Then by lemma (1.1.10) and since  is arbitrary, thus  

P(T1(x) T2(y), a)  a1 p(x,T1
k(k), a) + a2 p(y, T2

k(y), a) 
  + a3 p (T1(x), T2

k(z3), a) 
  + a4 p(T2 (y), T1

k(z3), a) 
  + a5 p(x,y,a) …………….(1) 

For arbitrary z,w  x,  Put x = T2
k (z), y = T1

k(w), 

X1 = w, z2 %, z3 = g (w) in (1) we get 
P(T1(T2

k(%)), T2(T1
k(w),a)   a1 p(T2

k(z), T1
k(w),a) 

    +a2 p(T1
k(w), T2

k(z), a) 
    + a3 p (T1

k(T2
k(z), T1

k(T2(w)), a) 
    + a4 p (T2T1

k(w), T1
k(T2(w)), a) 

    + a5 p (T2
k(z), T1

k(w), a) 
 
i.e. p(T1,T2

k(z), T2 T1
k(w), a)  a p(T2

k9z), T1
k(w),a) 

      ………………..(2) 

Where a = 1  
 1 3

5 2 2 



a

aaa  

Let x0   X be arbitrary, We define a sequence {xn} as foolows 

xn 








even isn  If )(T
odd isn  If )(

1 2

1 1

n

n

X
XT

  

Now as proved in earlier theorems we can  show that {xn} is a Cauchy sequence and  
since x is sequentially complete  Hausdorff space there exists a point  u  X such that  u = 

nx
Lt

n
  

. For any positive integer h, we have  

 
P(u, T2(u),a )  p(u, T2(u), xn) + p(u, xh, a) + p(xh, T2(u), a) 
 = p(u, T2(u), Xh) + p(u,xh, a) + p (T1 (Xh-1), T2(u), a) 

Taking x = xh-1, y = u, x1 = T2
k(xh-1), Z2 = T1

k(xh-1) in (1) and using the above inequality 
we get 
 
P(u, T2(u)a)   p(u,T2(u), xh) + p(u, xh, a) + 

a1 p (xh-1, T1
K T2

K (xn-1), a + 
a2 p(u, T2

k T1
k (xn-1), a + 
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a3 p(T1, xn-1, T1
kT2

k(xn-1), a) + 
a4 p (T2 (u), T1

k T2
k(xn-1), a) + 

a5 p(xn-1,  u, a) 
 p(u, T2(u), xh) + p(u, xh, a) + a1 p (xh-1, xh+2 k-1, a) 
+ a2 p (xh-1, xh+2k-1,a) + a3p(xh, xh+2k-1,a) 
+ x4 p(T2(u),xh+2k-1,a) + a5p(xh-1,u,a) 

When h  , xh, xh-1, xh+2k-1 all tends to u. 

Thus, p(u,T2(u),a)  p(u,T2(u),u) + p(u, u, s) +  (a1 + a2 + a3 + a5) p(u,u,a) + a4p(T2(u), u, 
a) 
i.e. (1-a4) p(u,T2(u),a)  O which gives 

p(u, T2(u), a) = O, Hence (u, T2(u), a)  v. 

As v being arbitrary and X being a Hausdorff speace, we have u = T2(u). Similarly 
u = T1(u). Thus, u is a common fixed point of T1 and T2.  To prove that u is the unique 
common fixed point of T1 and T2.   To prove that u is the unique common fixed point of 
T1 and T2. Let  uo  u be another point such that T1(uo) = T2(uo) =  uo  giving p(u, uo, a) = 
p(T1(u), T2(uo), a). Taking x = u = z2 and y = uo

 = z1 = z3 in (1) we get the desired result. 
 

(7.2.4) THEOREM: Let f and g be two operators such that  

(i) f,g maps  X into  itself 
(ii) f, g  = g.f 
(iii) for all x,y,x1, x2, z3, z4  X and for each a  x and each p  p any four members 

v1, v2, v3, v4,  in v (f(x), g(y), a)  a1 v1 o a2 v2 o a3 v3 o  a4 v4. 
 

If (x,fk(x1), a)  v1  : (y,gk(x2), a)  v2  : 
(f(x), fk(x3), a)   v3 : (g(y), fk(x4)  v4, where each  
a1 ( I = 1,2,3,4) are independent of x,y,a,z1,z2, z3, z4   

and v1, v2, v3, v4, a1  O for each  i  = 1,2,3,4 and  

1

4




i
 a1 < 1, k  1 ( k is an integer). 

 Then f and £ have a unique common fixed point in x. 

Proof:  Suppose v be any member of  V and p the Minkowaki’s paeudc 2 – metric of v. 
Put p(x, fk (z1), a) = r1 : p(y, gk(z2), a) = r2 
      P(f(x), fk(z3), a)  = r3 : p (g(y), gk(z4), a) = r4. 
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Now  for any  > O, we have 

(x, fk(z1), a)  (r1 + ) v ; (x, gk(z2), a)  (r2 + ) v, 
(f(x), fk(x3), a)  (r3 + ) v; (g(y), gk(z4),a)  (r3 + ) v  

Thus by given condition we have 

(f(x), g(y), a)  a1 (r1 + ) v o a2(r2 + ) v o a3 (r3 + ) v o a4 (r4 + ) v 
Then by lemma (1.1.10) and since  is arbitrary, we have  

P(f(x), g(y), a)  a1 p(x,fk(z1),a) , a2 p(y,gk(z2), a), a3p (f(x), fk(z3), a) + a4p(g(y), gk(z4), a) 
…………………… (1) 
 
Now for the arbitrary x,w  X, put 

X = gk(z), y = fk(w), z1 = w, z2 = z, z3 = g(w), then we have 
P(fgk(z), gfk(w),a)  a1 p (gk(z), fk(w), a) 
   + a2 p (fk(w), gk(w), a) 
   + a3 p(fgk(z), fk(w), a) 
   + a4 p(gfk(w), gkf(w), a) 
   ap(gkx), fk(w), a) ……………….. (2) 

  Where  
4 3

2 1

a - 1
a 

a
aa



  

Let xo be arbitrary, Define a sequence {xn} as follows 






even   )g(x
     )f(x

 
1-n

1-n

isnwhen
oddisnwhen

X n  

In view of given condition (ii) we observe that 

X2n  = fn gn (Xo) and x2n + 1  = f n+1 gn(xo). Let  n > t 

Which gives  n = t + g for some integer q > 1, then proceeding as in previous theorem we 
have 
 
P(x2n, x2n+1+, a)   a2n – 2t p(X2t, X2t+1, a) 
 
Now for  m > n > t then again proceeding similar to the previous theorem we can show 
that {xn} is a Cauchy sequence. Since x is sequentially complete Hausedorff 
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Space, there exists  u  X such that  u = nx
Lt

n
  

. 

For any odd positive integer h, we have 

P(u, g(u), a)  p(u, g(u), xh + p (u, xh, a) + p(xh, g(u), a) 
 = p(u,g (u), xh) + p(u,xh,,a) p(f(xh-1), g(u),a) 

Taking x = xh-1, y = u, z1 = gk (xh-1), z2 = fk (xh-1). 

In (1) and using the above inequality we get 

P(u, g(u), a)  p(u, g(u), xh + p (u, xh, a) + a1 p(xh-1, fk gk(xh-1), a 
  + a2 p( u,g  gk fk (xh-1), a) +  a3p(f(xh-1) , fk gk((xh-1), a 
  + a4 p (g (u), gk fk (xh-1), a) 
  = p (u,g(u), xh) + p(u, xh, a) + a1 p(xh-1, xh+2k-1, a) 
  + a2 p(u, xh+2k-1,a) + a3 p(xh, xh+2k-1, a) 
  + a4 p( g(u), xh+2k-1, a) 

Then h  , xh, xh-1, xh+2k-1 all tends to u. 

Therefore p(1-a4)  p(u, g(u), a)  O which implies 

That p(u, g(u), a) = O. Hence (u, g(u), a)  v. 

Since v is arbitrary and X is a Hausdorff space. 

Therefore, we have u = g(u).  Similarly u = f(u). 

Thus u is the common fixed point of f and g.  For the  uniquences of u. Let u  u  be  such 

that 

f (u )  =  g(u )  = (u ).   On putting x = u = z2  = z4 

and y =  u  = z1 = z3 in (1) the desired  result follows.? // 

(7.2.5) THEOREM: Let f and g be two operators such that  

(i) f, g map x into itself 
(ii) f.g  = g, f 
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(iii) for all x,y,z1,z2,z3,z4,  X and for every a  X and each p  P, any ten members  
v1, v2, v3 …………… v10 in v 

 
(f(x), g(y),a)  a1 v1 o a2 v2 o a3 v2 o a3 v3 o a4 v4 o a5 v5 o a6 v6 o a7 v7 o a8 v8 o a9 v9 o a10 
v10. 
 
 If (x,fk(z1), a)   v1 : (y, gk(z2), a)  v2 : (f(x), fk(z3), a)  v3 (g(y), gs(z4), a)  v4 : (x,gs(z2), 
g(y), a)  v5 : (x,y,a)  v6 : (f(x), gs(z4), a) v7 : ( fk(z3), g(y), a)  V8 : (fk(x3), gs(z4), a)  v9 ( 
g, fk(z1), a)  v10. 
 
Where each  a1 ( 1 = 1,2……………….10) are independent of  

X,y,a, z1, z2,z3, z4 and v1
’s (I = 1,2 ………………10) 

With each a 1  O (i  = 1,2, ……………..10),  
1

10




i
 a1 < 1 and s,k  1. 

 Then f and g have a unique common fixed point in X. 

Proof:  Let  v be any member of V and p is the Minkowski’s pseudo – 2 – metric of 
v. Write 
P(x,fk(x1), a)  = r1 : p (y,gs(z2), a) =  r2 : 
P(f(x), fk(x3), a) = r3 : p(g(y), gs(z4), a) = r4 : 
P(x,gs(z5), a) = r5 : p(x,y,a) = r6 : p(f(x), gs(z4), a) = r7 : 
P(fk(z3), g(y),a) = r8 : p(fk(z3), gs(z4), a) = r9 :  
P(y, fk(z1), a) = r10. 

For any arbitrary  > o, we have (x,fk(z1), a)  (r1 + ) v;  

(y,gs(z2), a)  (r2 + ) v ; (f(x), fk(r3), a)  (r3 + ) v ; 
(g(y), gs (z4),a)  (r4 + ) v : (x,gs(z2), a)   (r5 + ) v ; 
(x,y,a)  (r6 + ) v ; (f(x), gs(z4), a)  (r7 + ) v; 
(fk(z3), g(y), a)  (r8 + ) v  : (fk(z3), f8(z4), a)  (r9 + ) v: 
(y, fk(z1), a)  (r10 + ) v. Thus from given condition 

We have 

(f(x), g(y), a)  a1 (r1 + ) v o a2 (r2 + ) v o a3 9r3 + ) o 
     a4((r4 + ) v o a5 (r5 + ) v o a6 (r6 + ) v o  

   a7 (r7 + ) v o a8 (r8 + ) v o a9 (r9 + ) v o  
   a10 (r10 + ) v.  
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Now by lemma (1.1.10) and since  is arbitrary, thus we have 

p(f(x), g(y),a)  a1 p(x,fk(x1),a) + a2 p(y,gs)(x2),a) 
  + a3p(f(x), fk(z3), a) + a4 p(g(y), gs(z4), a) + 
  + a5p(x,gs(x2),a) + a6 p(x,y,a) + 
  + a7 p(f(x), gs(z4), a) + a8 p(fk(z3), g(y),a) 
  + a9 p(fk(z3) gs(z4), a) + a10p(y, fk(x1), a)             …………. (1) 

For arbitrary x,w in X, Put x = gs (z), y = fk(w), 

X1 = w,  z2 = z, z3 = g(w), z4 = f(z) in (1) we get 

P(f(gs(z), g(fk(w)),a)  a1p(gs(z), fk(w), a) + 
   + a2 p(fk(w), gs(z), a) 
   + a3 p(f(gs(z), fk(g(w)), a) 
   + a4 p(g(fk(w)), gs(f(z)), a) + 
   + a5 p(gs(z), gs(z), a)  + 
   + a6 p(gs(z), fk(w), a) + 
   + a7 p(f(gs(z)), gs(f(z)), a) + 
   + a8 p(fk(g(w)), g(fk(w)), a) + 
   + a9 p(fk(g(w)), gs(f(z)), a) 
    +  a10 p(fk(w), fk(w), a) + 

i.e. p(f(gs(z)), g(fk(w)),a)  )),(),((
1 54 3

6 2 1 awfzgp
aaa

aaa ks









  

     a p(gs(z), fk(w), a) ………… (2) 

    Where  1
1 9 43

6 21 





aaa
aaaa  

Let xo   X be arbitrary. Consider the sequence (xn) as follows: 





 

even isn  when  )g(x
odd isn  when )(

1-n

1
 

n
n

xf
X  

In view of condition (ii) we observe that 
 
X2n  = fn gn (xo) and x2n-1 = f n+1 gn (xo) 
 
Let n > q which gives  n = q + 1, for some integer I > 1 
 
We have p(x2n, x2n+1, a)  a2n-2q p (x2q, x2q+1

, a) 
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Now, for  m > n > q, we can show that  {xn} is a Cauchy sequence by similar process as 

done in previous theorem. Since X is sequentially complete Hausdorff space. Therefore 

exists a number u  X such that  
 

Lim
n   xn = u. For any positive integer h we have  

P(u, g(u), a)  p(u,g(u), xh) + p(u, xh,a) + p(xh, g(u), a) 

  = p(u,g(u), xh) + p(u,xh,a) + p(f(xn-1), g(u), a) 

Now taking x = xh-1, y = u, z1 = ga(xh-1) = z3. 

X2 = fk(xh-1) = x4 in (1) and using in the above 

Inequality we have 

P(u,g(u), a)  p(u,g(u), xh) + p(u, xh, a) + 
+ a1p(xh-1,fk(gs(xh-1)), a) 
+ a2 p(u, gs(fk(xh-1)), a) + 
+ a3 p(f(xh-1), fk(gs(xh-1)), a) + 
+ a4 p(g(u), gs (fk(xh-1)), a) + 
+ a5 p(xh-1, gs(fk(xh-1)), a) + 
+ a6 p(xh-1, u, a) + 
+ a7 p(f(xh-1), gs (fk(xh-1)), a) + 
+ a8 p (fk(gs(xh-1)), g(u), a) 
+ a9 p(fk(gs(xh-1)), gs (fk(xh-1)), a) + 
+ a10 p (u, fk(gs(xh-1)), a) 
= p(u,g(u), xh) + p(u,xh,a) + a1p(xh-1, xh+k+s-1, a) 
+ a2p(u,xh+k+s-1,a) + a3p(xh, xh+k+s-1,a) + 
+ a4p(g(u), xh+k+s-1, a) + a5p(xh-1,xh+k+s-1,a) 
+ a6P(xh-1,u,a) + a7 p(xh, xh+k+s-1, a) + 
 + a8 p9xh+k+s-1, g(u), a) + a10p(u,xh+k+s-1,a) 

Then h   , xh, xh-1, xh+k+s-1 all tends to u. 

Thus we have 
p(u,g(u), a)    p(u,u,a) + p(u,u,a) + 
   a1 p(u,u,a) + a2 p(u,u,a) + 
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   a3 p(u,u,a) + a4 p( g (u),u,a) + 
   a5 p (u, u, a) + a6  p(u, u, a) + 
   a7 p(u, u, a) + a8 p(u, g(u), a) + 
   a10 p(u, u,a) + 

i.e., (1-a4 – a8) p(u, g(u), a)   O which gives 

p(u, g(u), a) = O as  
1

10




i
 a1 < 1 and p(u,g(u),a) …… O. 

Hence, (u, g(u), a)  v. 

Since v being arbitrary and X being Hausdorff space, we have u = g(u). Similarly u = 
f(u). Thus us is the common fixed point of f and g.  For the uniqueness of u, let  uo  u, be 
a point such that f(uo) = g (uo) = u. On putting x = u = x2

  = z4  and y = uo = x1 =  z3 in (1) 
we get the desired result. // 

Remarks; 

(1) If we put p = {d} without 2 – uniform space, Theorem 1.2.1 gives theorem of  Lal 
and Singth [34]. 

(2) If we put p =  {d} without 2 – uniform space, Theorm 1.2.2 to Theorem 1.2.5 
give extended form of results of Das and Sharma [11]. Singh and Singh [55(b)] 
etc. in 2 – metric space. 
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