Available online at www.internationaleJournals.com

INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES, TECHNOLOGY AND HUMANITIES

www.internationalejournals.com

International Journal of Mathematical Sciences, Technology and Humanities 46 (2012) 466 – 479

International eJournals

Primary Decomposition in A Γ-Semigroup

A. Gangadhara Rao¹, A. Anjaneyulu², D. Madhusudhana Rao³.

Dept. of Mathematics,

V S R & N V R College, Tenali, A.P. India.

¹raoag1967@gmail.com, ²anjaneyulu.addala@gmail.com, ³dmrmaths@gmail.com

ABSTRACT

In this paper the terms P-primary, primary decomposition of a Γ -ideal, reduced primary decomposition of a Γ -ideal in a Γ -semigroup S are introduced. If A₁, A₂, ... A_n are P-primary Γ -ideals in a Γ -semigroup S, then it is proved that $\bigcap_{i=1}^{n} A_i$ is also a P-primary Γ -ideal. If a Γ -ideal A in a Γ -semigroup S has a primary decomposition, then it is proved that A has a reduced primary decomposition. Further it is proved that every Γ -ideal in a (left, right) duo noetherian

decomposition. Further it is proved that every Γ -ideal in a (left, right) duo noetherian Γ -semigroup S has a reduced (right, left) primary decomposition. If A and B are two Γ -ideals in a Γ -semigroup S, then it is proved that $A^l(B) = \{x \in S : < x > \Gamma B \subseteq A\}$ and $A^r(B) = \{x \in S : B \Gamma < x > \subseteq A\}$ are Γ -ideals of S containing A. Further it is proved that (1) if A is a left primary Γ -ideal of a Γ -semigroup S, then $A^l(B)$ is a left primary Γ -ideal, (2) if A is a right primary Γ -ideal of a Γ -semigroup S, then $A^r(B)$ is a right primary Γ -ideal. It is proved that if Q is a P-primary Γ -ideal and if $A \nsubseteq P$, then $Q^l(A) = Q^r(A) = Q$ and also if $A \subseteq P$ and $A \nsubseteq Q$, then $\sqrt{(Q^l(A))} = \sqrt{(Q^r(A))} = \sqrt{Q}$. If A_1, A_2, \ldots, A_n , B are Γ -ideals of a Γ -semigroup S, then it is

proved that $\left(\bigcap_{i=1}^{n} A_{i}\right)^{l} (B) = \bigcap_{i=1}^{n} (A_{i})^{l} (B)$. Further if a Γ -ideal A in a Γ -semigroup S has two

reduced (one sided) primary decompositions; $A = A_1 \cap A_2 \cap ... \cap A_k = B_1 \cap B_2 \cap ... B_s$, where A_i is P_i -primary and B_j is Q_j -primary, then it is proved that k = s and after reindexing if necessary $P_i = Q_i$ for i = 1, 2, ..., k.

SUBJECT CLASSIFICATION (2010) : 20M07, 20M11, 20M12.

KEY WORDS : P- primary Γ -ideal, left primary decomposition, right primary decomposition, primary decomposition, reduced primary decomposition.

A. Gangadhara Rao¹, A. Anjaneyulu², D. Madhusudhana Rao³.

1. <u>INTRODUCTION</u> :

 Γ -semigroup was introduced by Sen and Saha [16] as a generalization of semigroup. Satyanarayana[14], [15] initiated the study of primary ideals in commutative semigroups and obtained primary decomposition theorem in commutative noetherian semigroups. Anjaneyulu. A [1], [2] and [3] initiated the study of primary ideals, semiprimary ideals in general semigroups and obtained primary decomposition theorem for ideals in a duo noetherian semigroups. Madhusudhana Rao, Anjaneyulu and Gangadhara Rao [8], and [11] initiated the study of Γ -ideals, prime Γ -radicals, Primary Γ -ideals and semiprimary Γ -ideals in Γ -semigroups. In this paper we establish a ' primary decomposition theorem` in duo noetherian Γ -semigroups. Also we obtain a necessary condition to have a unique reduced primary decomposition for a Γ -ideal in an arbitrary Γ -semigroup.

2. <u>PRELIMINARIES</u> :

DEFINITION 2.1: Let S and Γ be any two non-empty sets. Then S is said to be a Γ -semigroup if there exist a mapping from $S \times \Gamma \times S$ to S which maps $(a, \gamma, b) \rightarrow a \gamma b$ satisfying the condition : $(a\alpha b)\beta c = a\alpha(b\beta c)$ for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$.

NOTE 2.2 : Let S be a Γ -semigroup. If A and B are two subsets of S, we shall denote the set { $a\gamma b : a \in A$, $b \in B$ and $\gamma \in \Gamma$ } by A Γ B.

DEFINITION 2.3 : A Γ -semigroup S is said to be *commutative* Γ -semigroup provided ayb = bya for all $a, b \in S$ and $\gamma \in \Gamma$.

NOTE 2.4 : If S is a commutative Γ -semigroup then $a \Gamma b = b \Gamma a$ for all $a, b \in S$.

NOTE 2.5 : Let S be a Γ -semigroup and $a, b \in S$ and $\alpha \in \Gamma$. Then $a\alpha a\alpha b$ is denoted by $(a\alpha)^2 b$ and consequently $a \alpha a \alpha \alpha \alpha \alpha \dots (n \text{ terms})b$ is denoted by $(a\alpha)^n b$.

DEFINITION 2.6 : A nonempty subset A of a Γ -semigroup S is said to be a *left* Γ -*ideal* of S if $s \in S, a \in A, \alpha \in \Gamma$ implies $s\alpha a \in A$.

NOTE 2.7 : A nonempty subset A of a Γ -semigroup S is a left Γ - ideal of S iff S Γ A \subseteq A.

DEFINITION 2.8 : A nonempty subset A of a Γ -semigroup S is said to be a *right* Γ -*ideal* of S if $s \in S, a \in A, \alpha \in \Gamma$ implies $a\alpha s \in A$.

NOTE 2.9 : A nonempty subset A of a Γ -semigroup S is a right Γ - ideal of S iff $A\Gamma S \subseteq A$.

DEFINITION 2.10 : A nonempty subset A of a Γ -semigroup S is said to be a *two sided* Γ -*ideal* or simply a Γ -*ideal* of S if $s \in S$, $a \in A$, $\alpha \in \Gamma$ imply $s\alpha a \in A$, $a\alpha s \in A$.

NOTE 2.11 : A nonempty subset A of a Γ -semigroup S is a two sided Γ -ideal iff it is both a left Γ -ideal and a right Γ - ideal of S.

THEOREM 2.12 : The nonempty intersection of any two (left or right) Γ -ideals of a Γ -semigroup S is a (left or right) Γ -ideal of S.

THEOREM 2.13 : The nonempty intersection of any family of (left or right) Γ -ideals of a Γ -semigroup S is a (left or right) Γ -ideal of S.

THEOREM 2.14 : The union of any two (left or right) Γ -ideals of a Γ -semigroup S is a (left or right) Γ -ideal of S.

THEOREM 2.15 : The union of any family of (left or right) Γ -ideals of a Γ -semigroup S is a (left or right) Γ -ideal of S.

DEFINITION 2.16 : A Γ -ideal A of a Γ -semigroup S is said to be a *proper* Γ -*ideal* of S if A is different from S.

DEFINITION 2.17 : A Γ -ideal A of a Γ -semigroup S is said to be a *trivial* Γ -*ideal* provided S\A is singleton.

DEFINITION 2.18 : A Γ -ideal A of a Γ -semigroup S is said to be a *maximal* Γ -*ideal* provided A is a proper Γ -ideal of S and is not properly contained in any proper Γ -ideal of S.

THEOREM 2.19 : If S is a Γ -semigroup with unity 1 then the union of all proper Γ -ideals of S is the unique maximal Γ -ideal of S.

DEFINITION 2.20 : A Γ - semigroup S is said to be a *left duo* Γ - *semigroup* provided every left Γ - ideal of S is a two sided Γ - ideal of S.

DEFINITION 2.21 : A Γ - semigroup S is said to be a *right duo* Γ - *semigroup* provided every right Γ -ideal of S is a two sided Γ - ideal of S.

DEFINITION 2.22: A Γ - semigroup S is said to be a *duo* Γ - *semigroup* provided it is both a left duo Γ - semigroup and a right duo Γ - semigroup.

THEOREM 2.23 : A Γ -semigroup S is a duo Γ -semigroup if and only if $x\Gamma S^1 = S^1\Gamma x$ for all $x \in S$.

DEFINITION 2.24 : A Γ - ideal P of a Γ -semigroup S is said to be a *completely prime* Γ - *ideal* provided $x, y \in S$ and $x\Gamma y \subseteq P$ implies either $x \in P$ or $y \in P$.

DEFINITION 2.25 : A Γ - ideal P of a Γ -semigroup S is said to be a *prime* Γ - *ideal* provided A, B are two Γ -ideals of S and A Γ B \subseteq P \Rightarrow either A \subseteq P or B \subseteq P.

THEOREM 2.26 : A Γ - ideal P of a Γ -semigroup S is a prime Γ - ideal iff $a, b \in S$ such that $a\Gamma S^{1}\Gamma b \subseteq P$, then either $a \in P$ or $b \in P$.

THEOREM 2.27 : Every completely prime Γ -ideal of a Γ -semigroup S is a prime Γ -ideal of S.

THEOREM 2.28 : Let S be a commutative Γ -semigroup. A Γ -ideal P of S is prime Γ -ideal if and only if P is a completely prime Γ -ideal.

DEFINITION 2.29 : A Γ -ideal A of a Γ -semigroup S is said to be a *completely semiprime* Γ -*ideal* provided $x\Gamma x \subseteq A$; $x \in S$ implies $x \in A$.

THEOREM 2.30 : Every completely prime Γ -ideal of a Γ -semigroup S is a completely semiprime Γ -ideal of S.

THEOREM 2.31 : The nonempty intersection of any family completely prime Γ -ideals of a Γ -semigroup S is a completely semiprime Γ -ideal of S.

DEFINITION 2.32 : A Γ - ideal A of a Γ -semigroup S is said to be a *semiprime* Γ - *ideal* provided $x \in S$, $x\Gamma S^{I}\Gamma x \subseteq A$ implies $x \in A$.

THEOREM 2.33 : Every completely semiprime Γ -ideal of a Γ -semigroup S is a semiprime Γ -ideal of S.

THEOREM 2.34 : Let S be a commutative Γ -semigroup. A Γ -ideal A of S is completely semiprime iff semiprime.

THEOREM 2.35 : Every prime **Γ**-ideal of a **Γ**-semigroup S is a semiprime **Γ**-ideal of S.

THEOREM 2.36 : The nonempty intersection of any family of prime Γ -ideals of a Γ -semigroup S is a semiprime Γ -ideal of S.

NOTATION 2.37 : If A is a Γ -ideal of a Γ -semigroup S, then we associate the following four types of sets.

 A_1 = The intersection of all completely prime Γ -ideals of S containing A.

 $A_2 = \{x \in S : (x\Gamma)^{n-1} x \subseteq A \text{ for some natural number } n \}$

 A_3 = The intersection of all prime ideals of S containing A.

 $A_4 = \{x \in S : (\langle x \rangle \Gamma)^{n \cdot l} \langle x \rangle \subseteq A \text{ for some natural number } n \}$

THEOREM 2.38 : If A is a Γ - ideal of a Γ -semigroup S, then A \subseteq A₄ \subseteq A₃ \subseteq A₂ \subseteq A₁.

THEOREM 2.39 : If A is a Γ -ideal in a duo Γ -semigroup S then $A_1 = A_2 = A_3 = A_4$.

DEFINITION 2.40 : If A is a Γ -ideal of a Γ -semigroup S, then the intersection of all prime Γ -ideals of S containing A is called *prime* Γ -*radical* or simply Γ -*radical* of A and it is denoted by \sqrt{A} or *rad* A.

DEFINITION 2.41 : If A is a Γ -ideal of a Γ -semigroup S, then the intersection of all completely prime Γ -ideals of S containing A is called *complete prime* Γ -*radical* or simply *complete* Γ -*radical* of A and it is denoted by *c. rad* A.

NOTE 2.42: If A is a Γ -ideal of a Γ -semigroup S then *rad* $A = A_3$ and *c.rad* $A = A_4$.

THEOREM 2.43 : If A is a Γ -ideal of a duo Γ -semigroup S, then *rad* A = *c.rad* A

THEOREM 2.44 : If A and B are any two Γ-ideals of a Γ-semigroup S, then

A. Gangadhara Rao¹, A. Anjaneyulu², D. Madhusudhana Rao³.

- (i) $A \subseteq B \Rightarrow \sqrt{(A)} \subseteq \sqrt{(B)}$.
- (ii) $\sqrt{(A\Gamma B)} = \sqrt{(A \cap B)} = \sqrt{(A)} \cap \sqrt{(B)}.$
- (iii) $\sqrt{(\sqrt{A})} = \sqrt{A}$.

THEOREM 2.45 : If A and B are any two Γ-ideals of a Γ-semigroup S, then

- (i) $A \subseteq B \Rightarrow c.rad A \subseteq c.rad B$.
- (ii) $c.rad(A\Gamma B) = c.rad(A \cap B) = c.rad(A) \cap c.rad(B).$
- (iii) c.rad(c.rad A) = c.rad A.

3. PRIMARY IDEALS:

DEFINITION 3.1: A Γ-ideal A of a Γ-semigroup S is said to be a *left primary* Γ-*ideal* provided

i) If X, Y are two Γ -ideals of S such that $X\Gamma Y \subseteq A$ and $Y \not\subseteq A$ then $X \subseteq \sqrt{A}$. ii) \sqrt{A} is a prime Γ -ideal of S.

DEFINITION 3.2: A Γ -ideal A of a Γ -semigroup S is said to be a *right primary* Γ -*ideal* provided

i) If X, Y are two Γ -ideals of S such that $X\Gamma Y \subseteq A$ and $X \not\subseteq A$ then $Y \subseteq \sqrt{A}$. ii) \sqrt{A} is a prime Γ -ideal of S.

DEFINITION 3.3 : A Γ -ideal A of a Γ -semigroup S is said to be a *primary* Γ -*ideal* provided A is both a left primary Γ -ideal and a right primary Γ -ideal.

THEOREM 3.4 : Let A be a Γ -ideal of a Γ -semigroup S. Then X, Y are two Γ -ideals of S such that $X\Gamma Y \subseteq A$ and $Y \not\subseteq A \Rightarrow X \subseteq \sqrt{A}$ if and only if $x, y \in S$, $\langle x > \Gamma < y \rangle \subseteq A$ and $y \notin A \Rightarrow x \in \sqrt{A}$.

Proof: Suppose that X, Y are two Γ-ideals of S such that $X\Gamma Y \subseteq A$, $Y \not\subseteq A \Rightarrow X \subseteq \sqrt{A}$. Let *x*, *y* ∈ S, < *x* > Γ < *y* > ⊆ A and *y* ∉ A. Now *y* ∉ A ⇒ < *y* > ⊈ A.

By supposition $\langle x \rangle \Gamma \langle y \rangle \subseteq A$ and $\langle y \rangle \not\subseteq A \Rightarrow \langle x \rangle \subseteq \sqrt{A}$. Therefore $x \in \sqrt{A}$.

Conversely suppose that $x, y \in S, \langle x \rangle \Gamma \langle y \rangle \subseteq A$ and $y \notin A \Rightarrow x \in \sqrt{A}$.

Let X, Y be two Γ -ideals of S such that $X\Gamma Y \subseteq A$ and $Y \not\subseteq A$.

Suppose if possible $X \not\subseteq \sqrt{A}$. Then there exists $x \in X$ such that $x \notin \sqrt{A}$.

Since $Y \not\subseteq A$, let $y \in Y$ so that $y \notin A$.

Now $\langle x \rangle \Gamma \langle y \rangle \subseteq X\Gamma Y \subseteq A$ and $y \notin A \Rightarrow x \in \sqrt{A}$. It is a contradiction. Therefore $X \subseteq \sqrt{A}$.

THEOREM 3.5 : Let A be a Γ -ideal of a Γ -semigroup S. Then X, Y are two Γ -ideals of S such that $X\Gamma Y \subseteq A$ and $X \not\subseteq A \Rightarrow Y \subseteq \sqrt{A}$ if and only if $x, y \in S, \langle x \rangle \Gamma \langle y \rangle \subseteq A$ and $x \notin A \Rightarrow y \in \sqrt{A}$.

A. Gangadhara Rao¹, A. Anjaneyulu², D. Madhusudhana Rao³.

Proof: Suppose that X, Y are two Γ-ideals of S such that $X\Gamma Y \subseteq A$, $X \not\subseteq A \Rightarrow Y \subseteq \sqrt{A}$. Let $x, y \in S$, $\langle x \rangle \Gamma \langle y \rangle \subseteq A$ and $x \notin A$. Now $x \notin A \Rightarrow \langle x \rangle \not\subseteq A$.

By supposition $\langle x \rangle \Gamma \langle y \rangle \subseteq A$ and $\langle x \rangle \not\subseteq A \Rightarrow \langle y \rangle \subseteq \sqrt{A}$. Therefore $y \in \sqrt{A}$. Conversely suppose that $x, y \in S, \langle x \rangle \Gamma \langle y \rangle \subseteq A$ and $x \notin A \Rightarrow y \in \sqrt{A}$.

Let X, Y be two Γ -ideals of S such that $X\Gamma Y \subseteq A$ and $X \not\subseteq A$. Suppose if possible $Y \not\subseteq \sqrt{A}$. Then there exists $y \in Y$ such that $y \notin \sqrt{A}$.

Since $X \not\subseteq A$, let $x \in X$ so that $x \notin A$. Now $\langle x \rangle \Gamma \langle y \rangle \subseteq X\Gamma Y \subseteq A$ and $x \notin A \Rightarrow y \in \sqrt{A}$. It is a contradiction. Therefore $Y \subseteq \sqrt{A}$.

THEOREM 3.6 : Let S be a commutative Γ -semigroup and A be a Γ -ideal of S. Then the following conditions are equivalent.

1) A is a primary **Γ**-ideal.

2) X, Y are two Γ -ideals of S, $X\Gamma Y \subseteq A$ and $Y \not\subseteq A \Rightarrow X \subseteq \sqrt{A}$.

3) $x, y \in S, x\Gamma y \subseteq A, y \notin A \Rightarrow x \in \sqrt{A}$.

Proof: (1) \Rightarrow (2) : Suppose that A is a primary Γ -ideal of S. Then A is a left primary Γ -ideal of S.

So by definition 3.1, we get X, Y are two Γ -ideals of S, $X\Gamma Y \subseteq A$, $Y \not\subseteq A \Rightarrow X \subseteq \sqrt{A}$.

(2) \Rightarrow (3): Suppose that X, Y are two Γ -ideals of S, $X\Gamma Y \subseteq A$ and $Y \not\subseteq A \Rightarrow X \subseteq \sqrt{A}$.

Let $x, y \in S$, $x \Gamma y \subseteq A$ and $y \notin A$.

 $x\Gamma y \subseteq A \Rightarrow \langle x \rangle \Gamma \langle y \rangle \subseteq A$. Also $y \notin A \Rightarrow \langle y \rangle \nsubseteq A$.

Now $\langle x \rangle \Gamma \langle y \rangle \subseteq A$ and $\langle y \rangle \not\subseteq A$. Therefore by assumption $\langle x \rangle \subseteq \sqrt{A} \Rightarrow x \in \sqrt{A}$.

(3) \Rightarrow (1): Suppose assume that $x, y \in S, x\Gamma y \subseteq A, y \notin A$ then $x \in \sqrt{A}$.

Let X, Y be two Γ -ideals of S, $X\Gamma Y \subseteq A$ and $Y \not\subseteq A$.

Y ⊈ A ⇒ there exists $y \in Y$ such that $y \notin A$. Suppose if possible X ⊈ \sqrt{A} . Then there exists $x \in X$ such that $x \notin \sqrt{A}$. Now $x\Gamma y \subseteq X\Gamma Y \subseteq A$.

Therefore $x\Gamma y \subseteq A$ and $y \notin A$, $x \notin \sqrt{A}$. It is a contradiction. Therefore $X \subseteq \sqrt{A}$.

Let $x, y \in S$, $x\Gamma y \subseteq \sqrt{A}$. Suppose that $y \notin \sqrt{A}$.

Now $x\Gamma y \subseteq \sqrt{A} \Rightarrow (x\Gamma y\Gamma)^{m-1}(x\Gamma y) \subseteq A \Rightarrow (x\Gamma)^{m-1}x\Gamma(y\Gamma)^{m-1}y \subseteq A$.

Since $y \notin \sqrt{A}$, $(y\Gamma)^{m-1}y \notin A$.

Now $(x\Gamma)^{m-1}x\Gamma(y\Gamma)^{m-1}y \subseteq A$, $(y\Gamma)^{m-1}y \not\subseteq A \Rightarrow (x\Gamma)^{m-1}x \subseteq \sqrt{A} \Rightarrow x \in \sqrt{(\sqrt{A})} = \sqrt{A}$.

 \sqrt{A} is a completely prime Γ -ideal and hence \sqrt{A} is a prime Γ -ideal.

Therefore A is a left primary Γ -ideal. Similarly A is a right primary Γ -ideal.

Hence A is a primary Γ -ideal.

A. Gangadhara Rao¹, A. Anjaneyulu², D. Madhusudhana Rao³.

NOTE 3.7 : In an arbitrary Γ -semigroup a left primary Γ -ideal is not necessarily a right primary Γ -ideal.

EXAMPLE 3.8 : Let $S = \{a, b, c\}$ and $\Gamma = \{x, y, z\}$. Define a binary operation . in S as shown in the following table.

•	a	b	С
a	а	а	a
b	a	a	a
С	а	b	С

Define a mapping from $S \times \Gamma \times S \longrightarrow S$ by $a\alpha b = ab$, for all $a, b \in S$ and $\alpha \in \Gamma$.

It is easy to see that S is a Γ -semigroup. Now consider the Γ -ideal, $\langle a \rangle = S^1 \Gamma a \Gamma S^1 = \{a\}$.

Let $p\Gamma q \subseteq \langle a \rangle$, $p \notin \langle a \rangle \Rightarrow q \in \sqrt{\langle a \rangle} \Rightarrow (q\Gamma)^{n-1}q \subseteq \langle a \rangle$ for some $n \in \mathbb{N}$.

Since $b\Gamma c \subseteq \langle a \rangle$, $c \notin \langle a \rangle \Rightarrow b \in \sqrt{\langle a \rangle}$. Therefore $\langle a \rangle$ is left primary.

If $b \notin \langle a \rangle$ then $(c\Gamma)^{n-1}c \notin \langle a \rangle$ for any $n \in \mathbb{N} \Rightarrow c \notin \sqrt{\langle a \rangle}$.

Therefore $\langle a \rangle$ is not right primary.

THEOREM 3.9 : Every Γ -ideal A in a Γ -semigroup S is left primary if and only if every Γ -ideal A satisfies condition (i) of definition 3.1.

Proof: If every Γ -ideal A of S is left primary, then clearly every Γ -ideal satisfies condition (i) of definition 3.1.

Conversely suppose that every Γ -ideal of S satisfies condition (i) of definition 3.1. Let A be any Γ -ideal of S. Suppose that $x, y \in S$ and $\langle x \rangle \Gamma \langle y \rangle \subseteq \sqrt{A}$.

If $y \notin \sqrt{A}$, then by our supposition $x \in \sqrt{(\sqrt{A})} = \sqrt{A}$.

Therefore \sqrt{A} is a prime Γ -ideal. Hence A is left primary.

THEOREM 3.10 : Every Γ -ideal A in a Γ -semigroup S is right primary if and only if every Γ -ideal A satisfies condition (i) of definition 3.2.

Proof: If every Γ -ideal A of S is right primary, then clearly every Γ -ideal satisfies condition (i) of definition 3.2.

Conversely suppose that every Γ -ideal of S satisfies condition (i) of definition 3.2.

Let A be any Γ -ideal of S. Suppose that $x, y \in S$ and $\langle x \rangle \Gamma \langle y \rangle \subseteq \sqrt{A}$.

If $x \notin \sqrt{A}$ then by our supposition $y \in \sqrt{(\sqrt{A})} = \sqrt{A}$.

Therefore \sqrt{A} is a prime Γ -ideal. Hence A is left primary.

DEFINITION 3.11 : A Γ -semigroup S is said to be *left primary* provided every Γ -ideal of S is a left primary Γ -ideal of S.

A. Gangadhara Rao¹, A. Anjaneyulu², D. Madhusudhana Rao³.

DEFINITION 3.12 : A Γ -semigroup S is said to be *right primary* provided every Γ -ideal of S is a right primary Γ -ideal of S.

DEFINITION 3.13 : A Γ -semigroup S is said to be *primary* provided every Γ -ideal of S is a primary Γ -ideal of S.

THEOREM 3.14 : Let S be a Γ-semigroup with identity and let M be the unique maximal Γ -ideal of S. If $\sqrt{A} = M$ for some Γ -ideal of S, then A is a primary Γ -ideal.

Proof: suppose that $x, y \in S, \langle x \rangle \Gamma \langle y \rangle \subseteq A$ and $y \notin A$.

If $x \notin \sqrt{A}$ then $\langle x \rangle \notin \sqrt{A} = M$.

By theorem 2.19, M is the union of all proper Γ -ideals of S, we have $\langle x \rangle = S$ and hence

 $\langle y \rangle = \langle x \rangle \Gamma \langle y \rangle \subseteq A$. It is a contradiction. Therefore $x \in \sqrt{A}$.

Let $x, y \in S, \langle x \rangle \Gamma \langle y \rangle \subseteq \sqrt{A}$ and $\langle y \rangle \not\subseteq \sqrt{A}$.

Since M is the unique maximal Γ -ideal, we have $\langle x \rangle = S$.

Hence $\langle y \rangle = \langle x \rangle \Gamma \langle y \rangle \subseteq \sqrt{A}$. It is a contradiction. Therefore $\langle x \rangle \subseteq \sqrt{A}$.

Similarly if $\langle x \rangle \not\subseteq \sqrt{A}$, then $\langle y \rangle \subseteq \sqrt{A}$ and hence $\sqrt{A} = M$ is a prime Γ -ideal.

Thus A is left primary. By symmetry it follows that A is right primary.

Therefore A is a primary Γ -ideal.

NOTE 3.15: If a Γ -semigroup S has no identity, then the theorem 3.14, is not true, even if the Γ -semigroup S has a unique maximal Γ -ideal. In example 3.8, $\sqrt{\langle a \rangle} = M$ where $M = \{a, b\}$ is the unique maximal Γ -ideal. But $\langle a \rangle$ is not a primary Γ -ideal.

THEOREM 3.16: If S is a Γ -semigroup with identity, then for any natural number *n*, $(M\Gamma)^{n-1}M$ is primary Γ -ideal of S where M is the unique maximal Γ -ideal of S.

Proof: Since M is the only prime Γ -ideal containing $(M\Gamma)^{n-1}M$, we have $\sqrt{((M\Gamma)^{n-1}M)} = M$ and hence by theorem 3.14, $(M\Gamma)^{n-1}M$ is a primary Γ -ideal.

NOTE 3.17: If S has no identity then theorem 3.16, is not true. In example 3.8, $M = \{a, b\}$ is the unique maximal Γ -ideal, but $M\Gamma M = \{a\}$ is not primary.

DEFINITION 3.18 : A Γ -ideal A of a Γ -semigroup S is said to be *semiprimary* provided \sqrt{A} is a prime Γ -ideal of S.

DEFINITION 3.19 : A Γ -semigroup S is said to be a *semiprimary* Γ -semigroup provided every Γ -ideal of S is a semiprimary Γ -ideal.

THEOREM 3.20 : (1) Every left primary **Γ**-ideal of a **Γ**-semigroup is a semiprimary **Γ**-ideal (2) Every right primary **Γ**-ideal of a **Γ**-semigroup is a semiprimary **Γ**-ideal.

Proof: By the definition of a left primary Γ -ideal of a Γ -semigroup, every left primary Γ -ideal is a semiprimary Γ -ideal. By the definition of a right primary Γ -ideal of a Γ -semigroup, every right primary Γ -ideal is a semiprimary Γ -ideal.

4. <u>PRIMARY DECOMPOSITION IN A Γ-SEMIGROUP</u> :

DEFINITION 4.1 : Let P be any prime Γ -ideal in a Γ -semigroup S. A primary Γ -ideal A in S is said to be *P-primary* or P is a *prime* Γ -*ideal belonging to A* provided $\sqrt{A} = P$.

THEOREM 4.2: If A₁, A₂, ..., A_n are P-primary Γ -ideals in a Γ -semigroup S, then $\bigcap_{i=1}^{n} A_i$ is

also a P-primary Γ-ideal.

Proof: Let $A = \bigcap_{i=1}^{n} A_i$. Now $\sqrt{A} = \sqrt{\frown A_i} = \frown \sqrt{A_i} = P$. So \sqrt{A} is a prime Γ -ideal. Suppose $\langle a \rangle \Gamma \langle b \rangle \subseteq A$ and $b \notin A$. So $b \notin A_i$ for some *i*. Now Suppose $\langle a \rangle \Gamma \langle b \rangle \subseteq A_i$ and $b \notin A_i$. Since A_i is a P-primary Γ -ideal, we have $a \in \sqrt{A_i} = P = \sqrt{A}$. So A is a left primary Γ -ideal. Similarly we can show that A is a right primary Γ -ideal. Thus A is a P-primary Γ -ideal.

DEFINITION 4.3 : A Γ -ideal A in a Γ -semigroup S is said to have a (*left, right*) *primary decomposition* if $A = A_1 \cap A_2 \cap \ldots \cap A_n$ where each A_i is a (left, right) primary Γ -ideal. If no A_i contains $A_1 \cap A_2 \cap \ldots \cap A_{i-1} \cap A_{i+1} \cap \ldots \cap A_n$ and the Γ -radicals P_i of the Γ -ideals A_i are all distinct, then the primary decomposition is said to be *reduced*. If P_i is minimal in the set { P_1, P_2, \ldots, P_n } then P_i is said to be *isolated prime*.

THEOREM 4.4 : If a Γ -ideal A in a Γ -semigroup S has a primary decomposition, then A has a reduced primary decomposition.

Proof: If $A = A_1 \cap A_2 \cap \ldots \cap A_n$ where each A_i is primary and some A_i contains $A_1 \cap A_2 \cap \ldots \cap A_{i-1} \cap A_{i+1} \cap \ldots \cap A_n$, then $A = A_1 \cap A_2 \cap \ldots \cap A_{i-1} \cap A_{i+1} \cap \ldots \cap A_n$ is also a primary decomposition. By thus eliminating the superfluous A_i reindexing we have $A = A_1 \cap A_2 \cap \ldots \cap A_k$ with no A_i containing the intersection of other A_j . Let P_1, P_2, \ldots, P_r be the distinct prime Γ -ideals in the set $\sqrt{A_1}$, $\sqrt{A_2}$, \ldots , $\sqrt{A_k}$. Let A_i^1 , $1 \le I \le r$ be the intersection of all A_j 's belonging to the prime P_i . By theorem 4.2, each A_i^1 is primary for P_i . Clearly no A_i^1 contains the intersection of all other A_j^1 . Therefore $A = \bigcap_{i=1}^n A_i = \bigcap_{i=1}^r A_i^1$ and hence A has a reduced primary decomposition.

NOTE 4.5 : In an arbitrary Γ -semigroup it is not necessarily true that every Γ -ideal has a primary decomposition even if the Γ -semigroup is finite.

EXAMPLE 4.6 : Let S = {*a*, *b*, *c*} and $\Gamma = \{x, y, z\}$. Define a binary operation . in S as shown in the following table.

•	a	b	С
a	а	а	a
b	а	a	a
С	а	b	С

A. Gangadhara Rao¹, A. Anjaneyulu², D. Madhusudhana Rao³. Define a mapping $S \times \Gamma \times S \longrightarrow S$ by $a\alpha b = ab$, for all $a, b \in S$ and $\alpha \in \Gamma$.

It is easy to see that S is a Γ -semigroup. Now consider the Γ -ideal $\langle a \rangle = S^1 \Gamma a \Gamma S^1 = \{a\}$.

Let $p\Gamma q \subseteq \langle a \rangle$, $p \notin \langle a \rangle \Rightarrow q \in \sqrt{\langle a \rangle} \Rightarrow (q\Gamma)^{n-1}q \subseteq \langle a \rangle$ for some $n \in \mathbb{N}$.

Since $b\Gamma c \subseteq \langle a \rangle$, $c \notin \langle a \rangle \Rightarrow b \in \langle a \rangle$. Therefore $\langle a \rangle$ is left primary.

If $b \notin \langle a \rangle$ then $(c\Gamma)^{n-1}c \notin \langle a \rangle$ for any $n \in \mathbb{N} \Rightarrow c \notin \sqrt{\langle a \rangle}$.

Therefore $\langle a \rangle$ is not right primary. In the Γ -semigroup S, { *b*, *c* } and { a, b, *c* } are the only primary Γ -ideals and hence { *a* } has no primary decomposition.

DEFINITION 4.7: A Γ -semigroup S is said to be a *noetherian* Γ -semigroup if ascending chain if Γ -ideals becomes stationary.

i.e., if $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$ is an ascending chain of Γ -ideals of S, then there exists a natural number *m* such that $A_m = A_n$ for all natural numbers $n \ge m$.

THEOREM 4.8 : Every Γ -ideal in a (left, right) duo noetherian Γ -semigroup S has a reduced (right, left) primary decomposition.

Proof: Let Σ be the collection of all Γ -ideals in S which has no primary decomposition. If Σ is not empty, then since S is noetherian, Σ contains maximal elements. Let C be a maximal element in Σ . Clearly C is not primary. Suppose that C is not left primary. Then there exists elements a, b in S such that $\langle a \rangle \Gamma \langle b \rangle \subseteq C$, $b \notin C$ and $a \notin \sqrt{C}$. Since S is a duo Γ -semigroup and theorem 2.39, $\sqrt{C} = \{x \in S : (x \Gamma)^{n-1}x \subseteq C \text{ for some natural number } n\}$. hence bv Therefore $(a\Gamma)^{n-1}a \not\subseteq C$ and hence $(a\gamma)^{n-1}a \notin C$ for some $\gamma \in \Gamma$. For any natural number *n*, write $B_n = \{x \in S : (a\gamma)^n x \in C\}$. Let $x \in B_n$ and $s \in S$. $x \in B_n \Rightarrow (a\gamma)^n x \in C$. $(a\gamma)^n x \in C$ $C, s \in S \Rightarrow (a\gamma)^n x\gamma s \in C \Rightarrow x\gamma s \in B_n$. Therefore B_n is a right Γ -ideal in S. Since S is duo Γ-semigroup, B_n is a Γ-ideal in S. Now $B_1 \subseteq B_2 \subseteq \cdots$ is an ascending chain of Γ-ideals in S. Since S is noetherian there is a natural number k such that $B_k = B_i$ for all $i \ge k$. Since $b \in B_k$, we have B_k contains C properly. Write $D = (\alpha \gamma)^k S \cup C$. Since S is a duo Γ-semigroup, D is a Γ-ideal in S and containing C properly. Now we prove that $C = B_k \cap D$. Clearly $C \subseteq B_k \cap D$. If $x \in B_k \cap D$ and $x \notin C$, then $x = (\alpha \gamma)^k \gamma$ for some $\gamma \in S$. Since $x \in B_k$, we $(a\gamma)^{2k}y = (a\gamma)^k (a\gamma)^k y = (a\gamma)^k x \in C$. Therefore $(a\gamma)^k x \in C$. Therefore have $(a\gamma)^{2k}y \in C$. So $y \in B_{2k} = B_k$. Thus $x = (a\gamma)^k y \in C \Rightarrow x \in C$. It is a contradiction. So $B_k \cap D \subseteq C$ and hence $C = B_k \cap D$. Since B_k and D contains C properly and C is maximal in Σ , B_k and D have primary decompositions and hence C has a primary decomposition. It is a contradiction. Thus C is left primary. Similarly we can prove that C is right primary. Hence C is primary. It is a condiction. Therefore Σ is empty. Thus every Γ -ideal in a duo noetherian Γ -semigroup has a primary decomposition and hence by theorem 4.4, every Γ -ideal has a reduced primary decomposition.

COROLLARY 4.9 : Every Γ -ideal in a commutative noetherian Γ -semigroup S has a reduced primary decomposition.

A. Gangadhara Rao¹, A. Anjaneyulu², D. Madhusudhana Rao³.

THEOREM 4.10 : Let A and B be two Γ -ideals in a Γ -semigroup S. Then $A^{l}(B) = \{x \in S : \langle x \rangle \Gamma B \subseteq A\}$ is a Γ -ideal of S containing A.

Proof: Let $x \in A^{l}(B)$, $s \in S$ and $\gamma \in \Gamma$. $x \in A^{l}(B) \Rightarrow \langle x \rangle \Gamma B \subseteq A$. Now $\langle s \gamma x \rangle \Gamma B \subseteq \langle x \rangle \Gamma B \subseteq A \Rightarrow s \gamma x \in A^{l}(B)$.

And $\langle x \gamma s \rangle \Gamma B \subseteq \langle x \rangle \Gamma B \subseteq A \Rightarrow x \gamma s \in A^{l}(B).$

Therefore $s \gamma x, x \gamma s \in A^{l}(B)$. Hence $A^{l}(B)$ is a Γ -ideal of S containing A.

THEOREM 4.11 : Let A and B be two Γ -ideals in a Γ -semigroup S. Then A^r (B) = { $x \in S : B \Gamma \le x \ge A$ } is a Γ -ideal of S containing A.

Proof: Let $x \in A^r(B)$, $s \in S$ and $\gamma \in \Gamma$. $x \in A^r(B) \Rightarrow B\Gamma < x > \subseteq A$. Now $B\Gamma < s \gamma x > \subseteq B\Gamma < x > \subseteq A \Rightarrow s \gamma x \in A^r(B)$.

And $B\Gamma < x \gamma s > \subseteq B\Gamma < x > \subseteq A \Rightarrow x \gamma s \in A^r(B)$.

Therefore $s \gamma x, x \gamma s \in A^r(B)$. Hence $A^r(B)$ is a Γ -ideal of S containing A.

THEOREM 4.12 : If A is a left primary Γ -ideal of a Γ -semigroup S, then A^l (B) is a left primary Γ -ideal.

Proof: If $B \subseteq A$, then clearly $A^l(B) = S$. Suppose $B \not\subseteq A$. Let $b \in B \setminus A$. Let $x \in A^l(B)$. Then $\langle x \rangle \Gamma B \subseteq A$. So $\langle x \rangle \Gamma \langle b \rangle \subseteq A$. Since $b \notin A$, We have $x \in \sqrt{A}$ and hence

 $\sqrt{(A^{l}(B))} = \sqrt{A}$. Let $\langle x \rangle \Gamma \langle y \rangle \subseteq A^{l}(B)$ and $y \notin A^{l}(B)$. Now $\langle x \rangle \Gamma \langle y \rangle \Gamma B \subseteq A$.

If $x \notin \sqrt{(A^{l}(B))} = \sqrt{A}$, then $\langle y \rangle \Gamma B \subseteq A$ and hence $y \in A^{l}(B)$. It is a contradiction.

So $x \in \sqrt{(A^{l}(B))}$. Therefore $A^{l}(B)$ is a left primary Γ -ideal.

THEOREM 4.13 : If A is a right primary Γ -ideal of a Γ -semigroup S, then A^r (B) is a right primary Γ -ideal.

Proof: If B ⊆ A, then clearly A^{*r*} (B) = S. Suppose B \nsubseteq A. Let *b* ∈ B\A. Let *x* ∈ A^{*r*} (B). Then BΓ< *x* > ⊆ A. So < *x* > Γ < *b* > ⊆ A. Since *b* ∉ A, We have *x* ∈ √A and hence

 $\sqrt{(A^r(B))} = \sqrt{A}$. Let $\langle x \rangle \Gamma \langle y \rangle \subseteq A^r(B)$ and $x \notin A^r(B)$. Now $\langle y \rangle \Gamma \langle x \rangle \Gamma B \subseteq A$.

If $y \notin \sqrt{(A^r(B))} = \sqrt{A}$, then $\langle x \rangle \Gamma B \subseteq A$ and hence $x \in A^r(B)$, a contradiction.

So $y \in \sqrt{(A^r(B))}$. Therefore $A^r(B)$ is a right primary Γ -ideal.

THEOREM 4.14 : If Q is a P-primary Γ -ideal and if $A \not\subseteq P$, then $Q^l(A) = Q^r(A) = Q$ and also if $A \subseteq P$ and $A \not\subseteq Q$, then $\sqrt{(Q^l(A))} = \sqrt{(Q^r(A))} = \sqrt{Q}$.

Proof: Clearly $Q \subseteq Q^l$ (A). Let $x \in Q^l$ (A). Then $\langle x \rangle \Gamma A \subseteq Q$. Since $A \notin P$, there exists $a \in A \setminus P$. Now $\langle x \rangle \Gamma A \subseteq Q$ and $a \notin \sqrt{Q}$. So $x \in Q$. Therefore Q^l (A) = Q. Similarly we can show that Q^r (A) = Q. The proof of the second part is evident.

THEOREM 4.15 : If A₁, A₂,..., A_n B are **Γ**-ideals of a **Γ**-semigroup S, then

$$\left(\bigcap_{i=1}^{n} A_{i}\right)^{l} (B) = \bigcap_{i=1}^{n} (A_{i})^{l} (B) .$$
Proof : $x \in \left(\bigcap_{i=1}^{n} A_{i}\right)^{l} (B) \iff \langle x \rangle \Gamma$ B $\subseteq \cap A_{i} \iff \langle x \rangle \Gamma$ B $\subseteq A_{i}$ for $i = 1, 2, 3..., n$.
 $\Leftrightarrow x \in A_{i}^{l}(B)$ for $i = 1, 2, 3..., n \iff x \in \bigcap_{i=1}^{n} A_{i}(B)$. Similarly we can show that if $x \in \cap A_{i}^{l}(B)$.
Then $x \in (\cap A_{i})^{l}(B)$. Therefore $\left(\bigcap_{i=1}^{n} A_{i}\right)^{l} (B) = \bigcap_{i=1}^{n} (A_{i})^{l} (B)$.

THEOREM 4.16 : Suppose a Γ -ideal A in a Γ -semigroup S has two reduced (one sided) primary decompositions $A = A_1 \cap A_2 \cap \ldots \cap A_k = B_1 \cap B_2 \cap \ldots B_s$, where A_i is P_i -primary and B_j is Q_j -primary. Then k = s and after reindexing if necessary $P_i = Q_i$ for $i = 1, 2, \ldots, k$. Further if each P_i is an isolated prime, then $A_i = B_i$ for $i = 1, 2, \ldots, n$.

Proof: Let P_k be the maximal lement in the set $P_1, P_2, ..., P_k, Q_1, Q_2, ..., Q_s$. Now we show that P_k occurs among $Q_1, Q_2, ..., Q_s$.

For this it is enough to show that $P_k \subseteq Q_j$ for some j. If $A_k \subseteq Q_j$ for some j, $P_k = \sqrt{A_k} \subseteq Q_j$. Suppose $A_k \not\subseteq Q_j$ for all j. Then by theorem 4.12, $B_j^l(A_k) = B_j$ for all j.

Now
$$A^{l}(A_{k}) = (B_{1} \cap B_{2} \cap \dots \cap B_{s})^{l}(A_{k})$$

= $B_{1}^{l}(A_{k}) \cap B_{2}^{l}(A_{k}) \cap \dots \cap B_{s}^{l}(A_{k})$, by using theorem 4.12,
= $B_{1} \cap B_{2} \cap \dots \cap B_{s} = A$.

But on the other hand if $1 \le i < k$, then $P_k \not\subseteq P_i$ and therefore $A_k \not\subseteq P_i$, so that $A_i^l(A_k) = A_i$ and $A_k^l(A_k) = S$.

So we have $A^{l}(A_{k}) = (A_{1} \cap A_{2} \cap ... \cap A_{k})^{l}(A_{k}) = A_{1}^{l}(A_{k}) \cap A_{2}^{l}(A_{k}) \cap ... \cap A_{k}^{l}(A_{k})$

 $= A_1 \cap A_2 \cap \ldots \cap A_{k-1}$. Therefore $A = A_1 \cap A_2 \cap \ldots \cap A_{k-1}$.

It is a contradiction to the fact that given decomposition is reduced.

Thus $A_k \subseteq Q_j$ for some j and hence $P_k \subseteq Q_j$. Therefore $P_k = Q_j$.

Without loss of generality we may assume that $P_k = Q_s$.

Let $B = A_k \cap B_s$. By theorem 4.2, B is a primary Γ -ideal and $P_k = Q_s(=P \text{ say})$ is a prime Γ -ideal belonging to B. Since $P \nsubseteq P_i$ for all i, $1 \le i \le k$ and $B \subseteq A_k$, we have $A_i^l(B) = A_i$ and $A_k^l(B) = S$. Therefore $A^l(B) = A_1 \cap A_2 \cap \ldots \cap A_{k-1}$.

Similarly we can show that $A^{l}(B) = B_1 \cap B_2 \cap \ldots \cap B_{s-1}$.

Hence $A^{l}(B) = A_{1} \cap A_{2} \cap \ldots \cap A_{k-1} = B_{1} \cap B_{2} \cap \ldots \cap B_{s-1}$ are two reduced primary decompositions for $A^{l}(B)$.

By continuing the above process, we get k = s and $P_i = Q_i$ for i = 1, 2, ..., k.

Suppose P_i's are isolated primes.

If $A_1 \not\subseteq B_1$ then since B_1 is primary and $A_1 \cap A_2 \cap \ldots \cap A_k \subseteq B_1 \cap B_2 \cap \ldots \cap B_k \subseteq B_1$,

we have $A_2 \cap A_3 \cap \ldots \cap A_k \subseteq \sqrt{B_1} = P_i$.

Now $P_2 \cap P_3 \cap \ldots \cap \cap P_k = \sqrt{A_1 \cap A_2 \cap \ldots \cap A_k} = P_1$.

Since P_1 is a prime Γ -ideal, $P_i \subseteq P_1$ for some $1 < i \le k$.

It is a contradiction to the fact that P_1 is an isolated prime.

So $A_1 \subseteq B_1$. Similarly we can show that $B_1 \subseteq A_1$. Therefore $A_1 = B_1$.

By continuing in this way we get $A_i = B_i$ for some i = 1, 2,, k.

- [1] Anjaneyulu. A, and Ramakotaiah. D., On a class of semigroups, Simon stevin,
- Vol.54(1980), 241-249.
 [2] Anjaneyulu. A., *Structure and ideal theory of Duo semigroups*, Semigroup Forum, Vol.22(1981), 257-276.
- [3] **Anjaneyulu.** A., *Semigroup in which Prime Ideals are maximal*, Semigroup Forum, Vol.22(1981), 151-158.
- [4] **Clifford. A.H.** and **Preston. G.B.**, *The algebraic theory of semigroups*, Vol-I, American Math.Society, Providence(1961).
- [5] **Clifford. A.H.** and **Preston. G.B.**, *The algebraic theory of semigroups*, Vol-II, American Math.Society, Providence(1967).
- [6] Giri. R. D. and Wazalwar. A. K., Prime ideals and prime radicals in noncommutative semigroup, Kyungpook Mathematical Journal Vol.33(1993), no.1,37-48.
- [7] Madhusudhana rao. D, Anjaneyulu. A & Gangadhara rao. A, Pseudo symmetric Γ-ideals in Γ-semigroups, International eJournal of Mathematics and Engineering 116(2011) 1074-1081.
- [8] Madhusudhana rao. D, Anjaneyulu. A & Gangadhara rao. A, Prime Γ-radicals in Γ-semigroups, International eJournal of Mathematics and Engineering 138(2011) 1250 - 1259.
- [9] Madhusudhana rao. D, Anjaneyulu. A & Gangadhara rao. A, Semipseudo symmetric Γ-ideals in Γ-semigroups,, International Journal of Mathematical Sciences, Technology and Humanities 18 (2011) 183 -192.
- [10] Madhusudhana rao. D, Anjaneyulu. A & Gangadhara rao. A, N(A)- Γ-semigroups, Indian Journal of Mathematics and Mathematical Sciences – New Delhi. Vol. 7, No. 2, (December 2011); 75 - 83.
- [11] Madhusudhana rao. D, Anjaneyulu. A & Gangadhara rao. A, Pseudo Integral Γ-semigroups, International Journal of Mathematical Sciences, Technology and Humanities 12 (2011) 118-124.
- [12]Madhusudhana rao. D, Anjaneyulu. A & Gangadhara rao. A, Primary and Semiprimary Γ-ideals in Γ-semigroup, International Journal of Mathematical Sciences, Technology and Humanities 29 (2012) 282-293.
- [13] **Petrch. M.,** *Introduction to semigroups,* Merril Publishing Company, Columbus, Ohio,(973).
- [14] **SATYANARAYANA M.,** *Commutative primary semigroups* Czechoslovak Mathematical Journal.22(97), (1972) 509-516.
- [15] **SATYANARAYANA M.**, *Commutative semigroups in which primary ideals are prime*, Math. Nachr., Band 48 (1971), Heft 1-6, 107-111.
- [16] **Sen. M.K.** and **Saha. N.K.**, *On* Γ-Semigroups-I, Bull. Calcutta Math. Soc. 78(1986), No.3, 180-186.
- [17] Sen. M.K. and Saha. N.K., On Γ-Semigroups-II, Bull. Calcutta Math. Soc. 79(1987), No.6, 331-335.

* * * * *