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ABSTRACT:  This paper deals with an investigation on a Four Species 
Syn-Ecological System (Prey and Predator washed out states).  The 
System comprises of a Prey (S1), a Predator (S2) that survives upon S1, 
two Hosts S3 and S4 for which S1, S2 are commensal respectively i.e., S3 
and S4 benefit S1 and S2 respectively, without getting effected either 
positively or adversely.  Further S3 and S4 are neutral.  The model 
equations of the system constitute a set of four first order non-linear 
ordinary differential coupled equations.  In all, there are sixteen 
equilibrium points.  Criteria for the asymptotic stability of three of the 
sixteen equilibrium points : the Prey and Predator washed out states only 
are established in this paper.  The system would be stable if all the 
characteristic roots are negative, in case they are real, and have negative 
real parts, in case they are complex.  The linearized equations for the 
perturbations over the equilibrium points are analyzed to establish the 
criteria for stability and the trajectories illustrated.  
 
 
 
 
1. INTRODUCTION: 
 
Mathematical modeling of Eco-System was initiated in 1925 by Lotka [10] 
and in 1931 by Volterra[14].  The general concepts of modeling have been 
presented in the treatises of Meyer[11], Kushing[7], Kapur J.N. [5,6] and 
several others.  The ecological interactions can be broadly classified as 
Prey-Predator, Commensalism, Competition, Neutralism, Mutualism and  
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so on.  N.C. Srinivas [13] studied competitive eco-systems of two species 
and three species with limited and unlimited resources.  Later 
Lakshminarayan [8], Lakshminarayan and Pattabhi Ramacharyulu [9] 
studied Prey-Preadtor ecological models with partial cover for the Prey 
and alternate food for the Predator.  Recently, Archana Reddy [1] and  
Bhaskara Rama Sharma [2] investigated diverse problems related to two 
species competitive systems with time delay, employing analytical and 
numerical techniques.  Further  Phani Kumar, Seshagiri Rao and 
Pattabhi Ramacharyulu [12] studied the stability of a Host-A flourishing 
commensal species pair with limited resources.  The present authors Hari 
Prasad B and Pattabhi Ramacharyulu.N.Ch studied the stability of the 
fully washed out state [3] and co-existent state [4].  Continuation of this 
criteria for the stability of the Prey and Predator only washed out states 
of the system are presented in this paper. 
   
Fig.1 shows the Schematic Sketch of the system under investigation.   
. 
         (Host of S1)   (Host of S2) 
     Neutral 
 
 
 
(Commensal of S3)            (Commensal of S4) 
Gets benefit from S3         Gets benefit from S4 
 
 
 
 
N1 Suffer  (Prey of S2)   (Predator of S1) 
       S2 Survives at the expense of S1   

Fig. 1 Schematic Sketch of the Syn Eco - System 
 

2. BASIC EQUATIONS OF THE MODEL: 
Notation Adopted:  
 
S1  :  Prey for S2 and commensal for S3. 

S2  :  Predator surviving upon S1 and commonsal for S4.  

S3  :  Host for the commonsal – Prey  (S1). 

S4  :  Host of the commonsal – Predator (S2)   

N1(t) :  The Population of the Prey (S1)   

N2(t) :  The Population of the Predator (S2)   

N3(t) :  The Population of the Host (S3)  of the Prey (S1) 

N4(t) :  The Population of the Host  (S4) of the Predator (S2) 

t  : Time instant 

S1 

S3 S4 

S2 
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a1,a2,a3,a4 : Natural growth rates of S1, S2, S3, S4 

a11,a22,a33,a44  : Self inhibition coefficients of S1, S2, S3, S4 

a12,a21 : Interaction (Prey-Predator) coefficients of S1 due to S2 and S2 

due to S1 

a13 : Coefficient for commensal for S1 due to the Host S3 

a24 : Coefficient for commensal for S2 due to the Host S4 

 

31 2 4

11 22 33 44

, , ,aa a a
a a a a

 : Carrying capacities of S1, S2, S3, S4 

Further the variables N1, N2, N3, N4 are non-negative and the model 

parameters a1, a2, a3, a4; a11, a22, a33, a44; a12, a21, a13, a24 are 

assumed to be non-negative constants. 

 
The model equations for the growth rates of  S1, S2, S3, S4 are  
 

21
1 1 11 1 12 1 2 13 1 3

dN a N a N a N N a N N
dt

      ….  (2.1) 

 
22

2 2 22 2 21 1 2 24 2 4
dN a N a N a N N a N N
dt

       ….  (2.2) 

 
23

3 3 33 3
dN a N a N
dt

      …. (2.3) 

 
24

4 4 44 4
dN a N a N
dt

      …. (2.4)  
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3 EQUILIBRIUM STATES: 
 

The system under investigation has sixteen equilibrium states defined 
by    
 

0, 1, 2,3, 4 idN i
dt

       ………… (3.1) 

 
are given in the following table. 
 

S.No. Equilibrium States Equilibrium Point 
1 Fully Washed out state 

1 2 3 40, 0, 0, 0N N N N     
2 Only the Host (S4)of S2 

survives 
4

1 2 3 4
44

0, 0, 0, aN N N N
a

     

3 Only the Host (S3)of S1 
survives 

3
1 2 3 4

33

0, 0, , 0aN N N N
a

     

4 Only the Predator S2 
survives 

2
1 2 3 4

22

0, , 0, 0aN N N N
a

     

5 Only the Prey S1 survives 1
1 2 3 4

11

, 0, 0, 0aN N N N
a

     

6 Prey (S1) and Predator (S2) 
washed out 

3 4
1 2 3 4

33 44

0, 0, ,a aN N N N
a a

     

7 Prey (S1) and Host (S3) of 
S1 washed out 

2 44 4 24 4
1 2 3 4

22 44 44

0, , 0,a a a a aN N N N
a a a


     

8 Prey (S1) and Host (S4) of 
S2 washed out  

32
1 2 3 4

22 33

0, , , 0aaN N N N
a a

     

9 Predator (S2) and Host 
(S3) of S1 washed out 

1 4
1 2 3 4

11 44

, 0, 0,a aN N N N
a a

     

10 Predator (S2) and Host 
(S4) of S2 washed out 

1 33 3 13 3
1 2 3 4

11 13 33

, 0, , 0a a a a aN N N N
a a a


     

11 Prey (S1) and Predator 
(S2)survives 

1 22 2 12 1 21 2 11
1 2 3 4

11 22 12 21 11 22 12 21

, , 0, 0a a a a a a a aN N N N
a a a a a a a a

 
   

 
 

12 Only the Prey (S1) washed 
out 

32 44 4 24 4
1 2 3 4

22 44 33 44

0, , ,aa a a a aN N N N
a a a a


     

13 Only the predator (S2) 
washed out 

1 23 3 13 3 4
1 2 3 4

11 13 33 44

, 0, ,a a a a a aN N N N
a a a a


     
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14 Only the Host (S3) of S1 
washed out 

32 4
1 2 3 4

1 1 44

1 44 11 22 12 21

2 1 22 44 12 2 44 4 24

3 1 21 44 11 2 44 4 24

, , 0,

( ) 0
( )
( )

aN N N N
a

where
a a a a a
a a a a a a a a
a a a a a a a a


 





   

  
  
  

 

15 Only the Host (S4) of S2 
washed out  

3 32
1 2 3 4

1 1 33

1 33 11 22 12 21

2 22 1 33 3 13 2 12 33

3 21 1 33 3 13 2 11 33

, , , 0

( ) 0
( )
( ) 0

aN N N N
a

where
a a a a a
a a a a a a a a
a a a a a a a a


 





   

  
  
   

 

16 The co-existent state  
(or) 
Normal steady state 

22 44 1 12 33 2 21 44 1 11 33 2
1 2

3 3

3 4
3 4

33 44

1 1 33 3 13

2 2 44 4 24

3 33 44 11 22 12 21

, ,

,

0
0

( ) 0

a a a a a a a aN N

a aN N
a a

where
a a a a
a a a a
a a a a a a

   
 





 
 

 

  

  

  

 

 
The present paper deals with the Prey and Predator washed out states 
only.  The stability of the other equilibrium states will be presented in the 
forth coming communications.  
 
4.  STABILITY OF THE PREY AND PREDATOR WASHED OUT 
EQUILIBRIUM STATES: (Sl. Nos. 2, 3, 6 in the above table) 
 

4.1 Equilibrium point 4
1 2 3 4

44

0, 0, 0, :aN N N N
a

      

 Let us consider small deviations from the steady state 
 i.e.     ii iN t N u t , i 1,2,3, 4     …………… (4.1.1) 

 where  iu t  is a small perturbations in the species iS .   
 
Substituting (4.1.1) in (2.1), (2.2), (2.3), (2.4) and neglecting products and 
higher powers of 1 2 3 4u , u ,u , u . 
 
We get 

1
1 1

du a u
dt

  …………… (4.1.2) 2
2 2

du p u
dt

  ……(4.1.3) 

3
3 3

du a u
dt

  …………… (4.1.4) 4
4 4

du a u
dt

   ……(4.1.5) 
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Here  2 24
2 2

44

a ap a 0
a

 
   
 

    … ………… (4.1.6) 

The characteristic equation of which is   
     1 2 3 4a p a a 0            … ………… (4.1.7) 
The roots 1 2 3a , p ,a  are positive and 4a  is negative. 
Hence the steady state is unstable. 
 
The solutions of the equations (4.1.2), (4.1.3), (4.1.4), (4.1.5) are 

1a t
1 10u u e  ……(4.1.8)   2p t

2 20u u e  ……(4.1.9) 
3a t

3 30u u e  ……(4.1.10)   4a t
4 40u u e  ……(4.1.11) 

where 10 20 30 40u ,u , u , u  are the initial values of 1 2 3 4u , u ,u , u  respectively. 
 
In the three equilibrium states, there would arise in all 576 cases 
depending upon the ordering of the magnitudes of the growth rates  

1 2 3 4a ,a ,a ,a  and the initial values of the perturbations    10 20u t ,u t  

   30 40u t , u t  of the species 1 2 3 4S ,S ,S ,S  of these 576 situations some typical 
variations are illustrated through respective solution curves that would 
facilitate to make some reasonable observations.  
 
 
 
Case (i):  If 10 20 30 40u u u u    and 1 2 3 4a p a a     
In this case the Host (S4) of S2 has the least 
natural birth rate.  Initially it is dominated over 
by the Prey (S1), Predator (S2), Host (S3) of S1 till 
the time instant 14 24 34t * , t * , t *  respectively and 
thereafter the dominance is reversed. 
Here  
  

40
14

1 4 10

u1t * log
a a u

 
    

 

40
24

2 4 20

u1t * log
p a u

 
    

 ; 40
34

3 4 30

u1t * log
a a u

 
    

 … …………(4.1.12)  

 
 
Case (ii):  If 20 10 40 30u u u u    and 4 2 2 3a a p a     
In this case the Host (S4) of S2 has the least 
natural birth rate.  Initially it is dominated over 
by the Prey (S1), Predator (S2) till the time instant 

14 24t * , t *  respectively and thereafter the dominance 
is reversed.  Also the Prey (S1) dominates over the  
 

0 t*14 t*24     t*21

u20

u10

u40

u30

u1
u2u3

u4

t

0 t*34 t*24 t*14

u10

u20

u30

u40

u1u2u3

u4

t
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Predator (S2) till the time instant 21t *  and the dominance gets reversed 
there after. 
 
 
Here  

20
21

1 2 10

u1t * log
a p u

 
    

 … …………(4.1.13)  

 
 
 
 
Case (iii): If 30 40 10 20u u u u    and 3 4 2 1a a p a     
In this case the Host (S4) of S2 has the least 
natural birth rate.  Initially it is dominated over 
by the Host (S3) of S1 till the time instant 34t *  and 
there after the dominance is reversed.  Also the 
Predator (S2) dominates over the Prey (S1) till the 
time instant 12t *  and the dominance gets reversed 
there after. 
Here 

20
12

1 2 10

u1t * log
a p u

 
    

… ………… (4.1.14) 

 
 
 
 
Case (iv) : If 40 10 20 30u u u u    and 4 1 2 3a a p a     
In this case the Host (S4) of S2 has the least natural 
birth rate.  And the Host (S3) of S1 dominates the 
Predator (S2), Prey (S1), Host (S4) of S2 in natural 
growth rate as well as in its initial population 
strength. 
 
 
 
 
 
 
 
4.1.A  Trajectories of perturbations : 
The trajectories in the 1 2u u  plane given by  

2p

1

10

u
u

 
 
 

 = 
1a

2

20

u
u

 
 
 

 …(4.1.15) 

and are shown in Fig. 2 

0 t*34 t*12

u30

u40

u10

u20

u1 u2 u3

u4

t

0

u40

u10

u20

u30

u1u2u3

u4

t

0 u1
u10

u2
u20

a1 = p2

a1 > p2

a1 < p2

Fig.2
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Also the trajectories in the 1 4u u  plane given by 

4a

1

10

u
u


 
 
 

=
1a

4

40

u
u

 
 
 

   ……(4.1.16) 

 
and  are shown in Fig. 3 
 
 
 
 
 
 

Similarly the trajectories in the 1 3u u , 2 3u u , 2 4u u , 3 4u u  planes are  
 
 

3 1 3 2

4 2 4 3

a a a p

3 31 2

20 30 20 30

a p a a

32 4 4

20 40 30 40

u uu u,
u u u u

uu u u,
u u u u

 

       
        
       


        
         

        

    ……(4.1.17) 

 
respectively. 
 

4.2 Equilibrium Point   3
1 2 3 4

33

0, 0, , 0:aN N N N
a

     

 Substituting (4.1.1) in (2.1), (2.2), (2.3), (2.4) and neglecting 
products and higher powers of  1 2 3 4u , u ,u , u . 
 
We get 
 

1
1 1

du p u
dt

  ………(4.2.1)  2
2 2

du a u
dt

  ………(4.2.2) 

3
3 3

du a u
dt

   ………(4.2.3)  4
4 4

du a u
dt

  ………(4.2.4) 

Here 3 12
1 1

33

a ap a 0
a

 
   
 

                       ……(4.2.5) 

 
 
The characteristic equation of which is 

    1 2 3 4p a a a 0             ………(4.2.6) 
the roots 1 2 4p ,a ,a  are positive and 3a  is negative. 
Hence the steady state is unstable. 

0 u1
u10

u4
u40

Fig. 3
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The solutions of the equations (4.2.1), (4.2.2), (4.2.3), (4.2.4) are 
 

1p t
1 10u u e  ………(4.2.7)  2a t

2 20u u e  ………(4.2.8) 
3a t

3 30u u e  ………(4.2.9)  4a t
4 40u u e  ………(4.2.10) 

 
Case (i) : If 10 40 30 20u u u u    and 1 3 2 4p a a a     
In this case the Host (S3) of S1 has the least natural 
birth rate.  Initially it is dominated over by the Prey 
(S1), Host (S4) of S2 till the time instant 13 43t * , t *  
respectively and there after the dominance is 
reversed.  Also the Predator (S2) dominates its Host 
till the time instant 42t *  and the dominance gets 
reversed there after. 
 
 
 

Here  30
13

1 3 10

u1t * log
p a u

 
    

 ; 40
43

3 4 30

u1t * log
a a u

 
    

 ; 

  40
42

2 4 20

u1t * log
a a u

 
    

   ………(4.2.11) 

 
Case (ii) : If 20 30 10 40u u u u    and 1 2 4 3p a a a    
In this case the Host (S3) of S1 has the least 
natural birth rate.  Initially it is dominated over 
by the Predator (S2) till the time instant 23t *  and 
there after the dominance is reversed. 
Also the Prey (S1) dominates over the Predator 
(S2) till the time instant 21t *  and the dominance 
gets reversed there after. 
 
 
 

Here  30
23

2 3 20

u1t * log
a a u

 
    

 ;      

  20
21

1 2 10

u1t * log
a a u

 
    

       ………(4.2.12) 

 
 
 
 
 
 
 

0 t*43 t*13 t*42

u30

u40
u10

u20

u1
u2

u3

u4

t

0 t*23             t*21

u30

u40

u10

u20

u1
u2

u3

u4

t
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Case (iii) : If 30 40 20 10u u u u    and 3 1 4 2a p a a    
In this case the Host (S3) of S1 has the least 
natural birth rate.  Initially the Prey (S1) 
dominates over by the Predator (S2), Host (S4) of 
S2 till the time instant 21 41t * , t *  respectively and 
thereafter the dominance is reversed. 
 
 
 
 
Here    

 40
41

1 4 10

u1t * log
a a u

 
    

 ………(4.2.13) 

 
 
Case (iv) : If 40 20 30 10u u u u    and 1 3 4 2p a a a    
In this the Host (S3) of S1 has the least natural birth 
rate.  Initially it is dominated over by the Predator 
(S2), Host (S4) of S2 till the time instant 23 43t * , t *  
respectively and thereafter the dominance is 
reversed.  
 
Also the Prey (S1) dominates over the Predator (S2), 
Host (S4) of S2 till the time instant 21 41t * , t *  
respectively and the dominance gets reversed there 
after. 
 
 
 
 
 
4.2.A. Trajectories of perturbations : 
 
 
The trajectories in the 1 2u u  plane given by  
  

2a

1

10

u
u

 
 
 

 = 
1p

2

20

u
u

 
 
 

    ………(4.2.14) 

 
and are shown in Fig. 4 
 
 
 
 

0 t*23 t*43 t*21       t*41

u30

u40

u10

u20

u1u2

u3

u4

t

0 u1
u10

u2
u20

p1 = a2

p1 > a2

p1 < a2

Fig. 4

0 t*21       t*41

u30

u40

u10

u20

u1
u2

u3

u4

t
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Also the trajectories in the 1 3u u  plane given by 

 
3 1a p

31

10 30

uu
u u


   

   
   

    ………(4.2.15) 

 
and are shown in Fig. 5 

 
 
 
Similarly the trajectories in the 1 4 2 4 2 3 3 4u u , u u , u u , u u     planes are 
 

 
4 1a p

1 4

10 40

u u
u u

   
   

   
, 

4 2a a

2 4

20 40

u u
u u

   
   

   
    ………(4.2.16) 

3 2a a

32

20 30

uu
u u


   

   
   

, 
4 3a a

3 4

30 40

u u
u u


   

   
   

      ………(4.2.17) 

 
respectively. 
 

4.3 Equilibrium Point 3 4
1 2 3 4

33 44

0, 0, , :a aN N N N
a a

     

 Substituting (4.1.1) in (2.1), (2.2), (2.3), (2.4) and neglecting 
products and higher powers of 1 2 3 4u , u ,u , u .  
 
We get 
 

1
1 1

du s u
dt

  ………(4.3.1)  2
2 2

du s u
dt

  ………(4.3.2) 

3
3 3

du a u
dt

   ………(4.3.3)  4
4 4

du a u
dt

   ………(4.3.4) 

Here  3 13
1 1

33

a as a 0
a

 
   
 

, 4 24
2 2

44

a as a 0
a

 
   
 

  ………(4.3.5) 

 
The characteristic equation of which is 

    1 2 3 4s s a a 0             ………(4.3.6)  
the roots 1 2s , s  are positive and 3 4a , a   are negative. 
 
Hence the steady state is unstable. 
 
The solutions of the equations (4.3.1), (4.3.2), (4.3.3), (4.3.4) are 

1s t
1 10u u e  ………(4.3.7)  2s t

2 20u u e  ………(4.3.8) 
3a t

3 30u u e  ………(4.3.9)  4a t
4 40u u e  ………(4.3.10) 

0 u1
u10

u3
u30

Fig.  5
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Case (i) : If 10 20 30 40u u u u    and 1 2 3 4s s a a    
In this case the Host (S3) of S1 has the least 
natural birth rate.  Initially it is dominated over 
by the Prey (S1), Predator (S2) till the time instant 

13 23t * , t *  respectively and there after the 
dominance is reversed.  Also the Host (S4) of S2 
dominates over the Prey (S1), Predator (S2) till the 
time instant 14 24t * , t *  respectively and the 
dominance gets reversed there after. 
 

Here  

30 30
13 23

1 3 10 2 3 20

40 40
14 24

1 4 10 2 4 20

u u1 1t * log , t * log
s a u s a u

u u1 1t * log , t * log
s a u s a u

   
         


           

 ………(4.3.11) 

 
 
Case (ii) : If 20 40 30 10u u u u    and 4 3 1 2a a s s    
In this case the Host (S4) of S2 has the least 
natural birth rate.  Initially it is dominated over 
by the Predator (S2) till the time instant 24t *  and 
there after the dominance is reversed. 
Also the Host (S3) of S1 dominates over the 
Predator (S2) till the time instant 23t *  and 
thereafter the dominance is reversed.  Similarly 
the Prey (S1) dominates over the Predator (S2) till 
the time instant 21t *  and the dominance gets 
reversed there after. 
 

Here  20
21

1 2 10

u1t * log
s s u

 
    

    ………(4.3.12)  

 
Case (iii) : If 30 20 40 10u u u u    and 2 1 4 3s s a a    
In this case the Host (S4) of S2 has the least 
natural birth rate.  Initially it is dominated over 
by the Predator (S2), Host (S3) of S1 till the time 
instant 24 34t * , t  respectively and there after the 
dominance is reversed. 

Here  40
34

4 3 30

u1t * log
a a u

 
    

 ………(4.3.13) 
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Case (iv) : If 40 30 10 20u u u u    and 3 2 4 1a s a s    
In this the Host (S3) of S1 has the least natural 
birth rate.  Initially it is dominated over by the 
Host (S4) of S2 till the time instant 43t *  and there 
after the dominance is reversed.  
 
Also the Predator (S2) dominates over the Prey (S1) 
till the time instant 12t *  respectively and the 
dominance gets reversed there after. 
 
 

Here  40
43

4 3 30

u1t * log
a a u

 
    

       

  20
12

1 2 10

u1t * log
s s u

 
    

  ………(4.3.14) 

 
 
 
 
4.3.A. Trajectories of perturbations : 
 
The trajectories in the 1 2u u  plane given by  
 

2 1s s

31

10 20

uu
u u

   
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   ………(4.3.15) 

 
and are shown in Fig. 6 
 
 
 
 
 
 
 
Also the trajectories in the 1 3u u  plane given by  
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
   

   
   

  ………(4.3.16) 

  
 and are shown in Fig. 7 
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Similarly the trajectories in the 1 4 2 3 2 4 3 4u u , u u ,u u , u u     planes are   
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  ………(4.3.17) 
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   
   
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  ………(4.3.18) 

   
respectively. 
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