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ABSTRACT 

In this paper, we discussed the Run – up flow of an incompressible viscoelastic 

Rivlin-Ericksen fluid through a parallel plate channel bounded by a sparsely packed porous 

bed subjected to a traverse magnetic field. The velocity in both clean fluid as well as porous 

zones, the stresses and the mass flux are have been evaluated and their behavior has been 

computationally discussed for variations in the governing parameters. 

Keywords: Run – up flow, Visco – elasticity, Brinkman equation, Newtonian fluid.     

Mathematical Subject classification: 58 D 30. 

1. INTRODUCTION: 

 Fluids are classified into two categories based on the constitutive equation of the fluid 

i.e., Newtonian fluids and Non-Newtonian fluids. Fluids like polymer solutions and paints in 

which stress and rate of strain relationship is nonlinear such are called non-Newtonian fluids. 

Majority of transportation of such non-Newtonian fluids through uniform or non uniform 

channels are related to Industrial, Technological or Biomedical problems. 

 

Rivlin-Ericksen fluid is a class of elastico viscous fluids which cannot be 

characterized by Maxewell’s constitutive relation or oldroyd’s constitutive relation. Many 

research workers have paid attention towards the study of Rivlin-Ericksen fluids (Sharma and 

kumar[2], Ozer and Suhubi and Sharma et al [3] ). Pattabhi Ramacharyulu and AppalaRaju 

[1] have studied run-up flow in a generalized porous medium. Ramakrishna [2] discussed a 
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similar problem related to the flow of a dusty viscous fluid in a conduit choosing parallel 

plate geometry and cylindrical geometry. Raji Reddy and Sambasiva Rao [3] analyzed run-up 

flow of viscous incompressible fluid through a rectangular pipe, a pipe of equilateral 

triangular cross-section, parallel plate channel and a cylinder. They solved the problem using 

ADI numerical technique. Basha [4] extended the analysis of Raji Reddy and Sambasiva Rao 

[3] by considering visco-elastic Rivlin-Ericksen fluid between parallel plates. He extended 

this study by taking a second order Rivlin – Ericksen fluid between parallel porous plates 

subjected to a constant suction. 

 

            The Darcy law is noticed to be inadequate to describe real flows of Newtonian and 

non-Newtonian fluids, which are of great practical interest. Hence a consideration for non-

Darcian description for such flows through porous media is warranted. Brinkman [1] 

suggested a modification to the Darcy’s law, which involves viscous stresses to account for 

the distortion of the velocity profiles near the boundaries. It is established that when the 

porosity is large this Brinkman equation obtained by adding the Laplacian term in velocity to 

Darcy’s law given satisfactory results.  

 

 In this paper, we discuss the Run-up flow of an incompressible Viscoelastic Rivlin – 

Ericksen fluid in a parallel plate channel bounded below by a sparsely packed porous bed. 

The flow in the non-porous region (zone 1) is governed by Navier-stokes equations while the 

Brinkman equation has been used for the momentum equation in the porous bed (zone 2). 

Initially the flow is due to a pressure gradient with boundaries at rest, and at time t > 0 the 

pressure gradient is withdrawn the upper plate suddenly moves with a uniform velocity while 

the lower plate continues to be at rest. The unsteady governing equations are solved as initial 

value problem. The velocity in both the clean fluid and porous zones has been evaluated and 

their behaviour is discussed computationally by variations in the governing parameters. 

Making use of the transform techniques the unsteady governing equations are solved 

imposing the boundary as well as interfacial continuity conditions. The velocity in both the 

zones the stresses on the boundaries and the mass flux have been evaluated and their behavior 

have been computationally discussed.  
 

2. FORMULATION AND SOLUTION OF THE PROBLEM: 

We choose the Cartesian system O ( ),( '' yx and in accordance with the run-up flow 

mechanism in the absence of any extraneous force the flow is unidirectional along the 

direction of the imposed pressure gradient parallel to the boundary planes. 

 

The equations governing the initial flow in non-dimensional form in zone – 1 and 

zone – 2 are 

PRRuM
dy

ud 2

2

2

       (1) 

PRRuMuD
dy

ud
pp

p 22

2

2

     (2) 

Where   
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U

hH
M e

2

0

2
2

 (The Hartmann number) 

Uh
R   (The Reynolds number) 

k

2h2D   (The inverse Darcy parameter) 

eff
   (The ratio of viscosities) 

The respective boundary conditions in non-dimensional form are  

u = 0 at y = 1                           (3) 

00 yatu p
        (4) 

The interfacial conditions in non-dimensional form are  

 puu , 1syat
dy

du

dy

du P      (5) 

At t > 0 the momentum equations governing the flow in non-dimensional form are     

 in Zone – 1 

 uM
yt

u
S

y

u

Rt

u 2

2

3

2

21
                (6) in 

Zone – 2 

 
pp

ppp
uMuRD

yt

u
S

y

u

Rt

u
212

2

2

2

2

)(
1

   (7) 

Where 
2

1

h
S  is the viscoelastic parameter 

The corresponding non-dimensional boundary and interfacial conditions are 

 11 yatu   (t > 0)                   (8) 

 00 yatu p  (t > 0)      

 
1

1

syat
dy

du

dy

du

syatupu

p       (9) 

Solving (1) and (2) subjected the condition (3) to (5) 

The expressions for the velocities u and up corresponding to the initial flow are  
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Where RMDM 22

1  

The details of the constant coefficients d16 etc. are given in the appendix. 

Now solve the governing equation (6) and (7) subjected to the conditions (8) to (9) 

Let puu ,  be the Laplace transforms of u  and pu   respectively. 

Taking transforms on both sides of (6) and (7) and making use of the expression for 

the initial velocity (10) and (11) the equations reduce to  
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SRs
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The boundary and the interfacial conditions in the transformed form are  

 
s

u
1

 at y = 1         (14) 

 0pu  at y = 0         (15) 

 
dy

ud

dy

ud
anduu

p

p  at y = s1        (16) 

Solving (12) and (13) we obtain  
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The expressions for d1, d2, etc. are given in the appendix. 

The shear stresses are calculated using the formula 
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3. DISCUSSIONS: 

 

The behaviour of the axial velocity in both clean fluid [u] and porous regions [up] the 

shear stress on the boundaries and the mass flux have been computationally evaluated for 

variations in the governing parameters viz. M, R, D
-1 

and S and their profiles are plotted in 

fig. 1-4. Also the influence of the thickness of the porous bed on the axial velocity has been 

discussed and the related profiles are plotted in fig. 5.  

 

Figs. 1 and 2 correspond to the axial velocity profiles for variations    M and R 

respectively, fixing the other parameters. We notice that the behaviour of the axial velocity in 

the porous as well as the clean fluid regions very much depends on the relative magnitudes of 

these two parameters. Keeping R = 10, when M<4 the axial velocity rises from zero on the 

lower plate to a maximum near the upper plate before attaining the prescribed velocity on the 

upper plate. However M>4 we notice that the fluid attains maximum velocity within the 

porous region near the interface and experiences a sudden retardation at the interface before 

gradually rising to attain the prescribed velocity on the upper plate [Fig. 1]. For sufficiently 

large M [~ 10] and 20R , we observe that u gradually enhances from rest on the lower plate 

to a maximum near the upper plate and rapidly retards to attain the prescribed value on the 

upper plate [Fig. 2]. We may note that u does not experience any retardation at the interface 

as in the case of lower values of R [Fig. 1]. Fig.3 corresponds to profiles of u for increase in 

the permeability of the medium k. We may note that as k increases the inverse Darcy 

parameter D
-1

 reduces. In the porous bed the fluid moves with enhanced velocity as the 

permeability increases while it moves with reduced velocity in the clean fluid region [Fig. 3]. 

Fixing the other parameter an increase in the viscoelastic parameter S retards the fluid flow 

[Fig.4] everywhere in the fluid region. Also for S [<1.5] the axial velocity experiences 

retardation at the interface before enhancing gradually to attain the prescribed velocity on the 

upper plate. However for S > 1.5 we notice that such retardation not found near the interface 

and velocity exhibits a monotonic behaviour in attain its prescribed values on the boundary. 

The thickness of the porous bed influences the flow both in the porous and clean fluid regions 

[Fig. 5]. We observe that as the thickness increases the fluid in the porous bed moves with 

reduced velocity. While in the clean fluid region it experiences relatively higher speeds in 

[Fig. 5]. 

 

The shear stress have been evaluated for lower and upper plates for different 

governing parameters and tabulated in table -1 and table -2. We find that the shear stresses 

reducing in their magnitude on either boundary planes for increasing the thickness of the 

porous bed fixing all the governing parameters. For small thickness of the porous bed the 

shear stress on the lower plate enhances with M or R the other parameters being fixed. 
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However the shear stress reduced with increasing S or D
-1

 fixing other parameters. A similar 

behaviors a notice even for large thickness of the porous bed. On the upper plate the shear 

stress is once again reduces with increase in the thickness of the porous bed. For variations in 

the governing parameters also its magnitude reduces with increase in M or S or D
-1

, keeping 

the other parameters fixed. However an increase in R enhances the shear stress on the upper 

plate for all sets of the remaining parameters. The mass flux has been evaluated and 

tabulated. The mass flux enhances with enhancement in the thickness of the porous bed for 

all the variations in the governing parameters. It also enhances increase in R while it reduce 

with increase in S. We also observe that lesser the permeability of the bed higher mass flux in 

the entire region fixing the other parameters it is interesting note that the mass flux enhances 

M for M < 8. But later reduces for higher values of M. 

 

 

Fig. 1. Variation of axial velocity with M 

P = 1, t = 1, D
-1

 = 10
4
, R = 10, S = 2.5,  = 1.2, s1 = 0.4 
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Fig. 2. Variation of axial velocity with R 

P = 1, t = 1, D
-1

 = 10
4
, M = 10, S = 2.5,  = 1.2, s1 = 0.4 

 

 

Fig. 3.  Variation of axial velocity with D
-1

 

P = 1, t = 1, R = 10, M = 10, S = 2.5,  = 1.2, s1= 0.4 

 

 

 

Fig. 4. Variation of axial velocity with S 
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Fig. 5. Variation of axial velocity with s1 

P = 1, t = 1, R = 10, M = 10, S = 2.5,  = 1.2, D
-1

 = 10
4
 

                                                                  Table-1 

                                            SHEAR STRESS  AT  y= 0 

s1 I II III IV V VI VII VIII IX X XI XII 

0.2 -11.2568 -12.8673 -14.902 -18.193 -24.5519 -30.6506 -15.9821 -12.8893 -11.9552 -11.5128 -11.2556 -11.2568 

0.4 -6.58855 -7.28827 -8.15632 -11.6336 -16.3004 -20.7513 -16.4158 -7.04258 -6.79953 -6.58846 -6.58856 -6.58856 

0.6 -5.36491 -5.83101 -6.40156 -9.98149 -14.4209 -18.7113 -7.02967 -5.42504 -5.43003 -5.36485 -5.36491 -6.58856 

0.8 -4.77935 -5.13706 -5.57087 -9.05139 -13.3096 -17.4944 -5.65555 -4.41886 -4.75986 -4.77931 -4.77935 -4.77938 
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                                                               Table-2 

           SHEAR STRESS  AT  y= 1 

 

s1 I II III IV V VI VII VIII IX X XI XII 

0.2 3.36284 3.31979 3.3119 4.49678 5.49036 6.33381 2.9356 3.2949 3.35035 3.36125 3.36284 3.36291 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

u

Y

s = 0.2

s = 0.4

s = 0.6
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0.4 3.29153 3.29257 3.26685 
4.53476 

5.50873 6.27725 5.34896 3.26415 3.30162 3.29153 3.2852 3.27701 

0.6 3.31317 3.11943 1.66351 4.44693 4.48695 0.611142 3.62499 3.29673 3.34383 3.31317 3.2363 3.2215 

0.8 3.29954 
-1.03902 -66.7735 2.51592 -3.8185 -2.706 3.57202 3.13089 3.32505 3.29955 3.29954 

3.29960 

    

 I II III IV V VI VII VIII IX X XI XII 

M 5 8 10 5 5 5 5 5 5 5 5 5 

R 10 10 10 20 30 40 10 10 10 10 10 10 

S 2.5 2.5 2.5 2.3 2.5 2.5 0.5 1 1.5 2.5 2.5 2.5 

D
-1 

10
4 10

4
 10

4
 10

4
 10

4
 10

4
 10

4
 10

4
 10

4
 10

4
 10

4
 10

4
 

 

Table-3 

                                                                 Mass flux 

 

s1 I II III IV V VI VII VIII IX X XI XII 

0.2 -39.4015          -55.0495 
-

35.1759 

-

75.5317 

-

97.0398 

-

140.586 

-

38.0582 
-27.6337 

-

28.1315 

-

35.1759 
-33.1757 -35.552 

0.4 -36.1869 -55.8984 
-

42.1799 

-

77.4136 

-

99.5413 

-

143.924 

-

43.6886 
-29.608 -29.467 

-

36.1865 
-36.187 -36.1868 

0.6 -37.2785 -56.761 
-

45.1595 

-

79.3435 

-

102.107 

-

147.347 

-

50.3423 
-31.7401 

-

30.8711 

-

37.2280 
37.2287 -37.3561 

0.8 -38.3017 -57.6374 -48.373 
-

81.3248 

-

104.739 

-

150.858 

-

58.4448 
-34.0492 

-

32.3485 

-

38.3012 
-38.3135 -38.3369 

1 -39.4075 -58.5276 
-

51.8693 

-

83.3592 

-

107.441 

-

154.461 

-

68.8872 
-36.5614 

-

33.9044 

-

39.4016 
-39.4077 -39.4522 
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