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ABSTRACT

In this paper, we discussed the Run — up flow of an incompressible viscoelastic
Rivlin-Ericksen fluid through a parallel plate channel bounded by a sparsely packed porous
bed subjected to a traverse magnetic field. The velocity in both clean fluid as well as porous
zones, the stresses and the mass flux are have been evaluated and their behavior has been
computationally discussed for variations in the governing parameters.
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1. INTRODUCTION:

Fluids are classified into two categories based on the constitutive equation of the fluid
i.e., Newtonian fluids and Non-Newtonian fluids. Fluids like polymer solutions and paints in
which stress and rate of strain relationship is nonlinear such are called non-Newtonian fluids.
Majority of transportation of such non-Newtonian fluids through uniform or non uniform
channels are related to Industrial, Technological or Biomedical problems.

Rivlin-Ericksen fluid is a class of elastico viscous fluids which cannot be
characterized by Maxewell’s constitutive relation or oldroyd’s constitutive relation. Many
research workers have paid attention towards the study of Rivlin-Ericksen fluids (Sharma and
kumar[2], Ozer and Suhubi and Sharma et al [3] ). Pattabhi Ramacharyulu and AppalaRaju
[1] have studied run-up flow in a generalized porous medium. Ramakrishna [2] discussed a
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similar problem related to the flow of a dusty viscous fluid in a conduit choosing parallel
plate geometry and cylindrical geometry. Raji Reddy and Sambasiva Rao [3] analyzed run-up
flow of viscous incompressible fluid through a rectangular pipe, a pipe of equilateral
triangular cross-section, parallel plate channel and a cylinder. They solved the problem using
ADI numerical technique. Basha [4] extended the analysis of Raji Reddy and Sambasiva Rao
[3] by considering visco-elastic Rivlin-Ericksen fluid between parallel plates. He extended
this study by taking a second order Rivlin — Ericksen fluid between parallel porous plates
subjected to a constant suction.

The Darcy law is noticed to be inadequate to describe real flows of Newtonian and
non-Newtonian fluids, which are of great practical interest. Hence a consideration for non-
Darcian description for such flows through porous media is warranted. Brinkman [1]
suggested a modification to the Darcy’s law, which involves viscous stresses to account for
the distortion of the velocity profiles near the boundaries. It is established that when the
porosity is large this Brinkman equation obtained by adding the Laplacian term in velocity to
Darcy’s law given satisfactory results.

In this paper, we discuss the Run-up flow of an incompressible Viscoelastic Rivlin —
Ericksen fluid in a parallel plate channel bounded below by a sparsely packed porous bed.
The flow in the non-porous region (zone 1) is governed by Navier-stokes equations while the
Brinkman equation has been used for the momentum equation in the porous bed (zone 2).
Initially the flow is due to a pressure gradient with boundaries at rest, and at time t > 0 the
pressure gradient is withdrawn the upper plate suddenly moves with a uniform velocity while
the lower plate continues to be at rest. The unsteady governing equations are solved as initial
value problem. The velocity in both the clean fluid and porous zones has been evaluated and
their behaviour is discussed computationally by variations in the governing parameters.
Making use of the transform techniques the unsteady governing equations are solved
imposing the boundary as well as interfacial continuity conditions. The velocity in both the
zones the stresses on the boundaries and the mass flux have been evaluated and their behavior
have been computationally discussed.

2. FORMULATION AND SOLUTION OF THE PROBLEM:

We choose the Cartesian system O ((x,y)and in accordance with the run-up flow

mechanism in the absence of any extraneous force the flow is unidirectional along the
direction of the imposed pressure gradient parallel to the boundary planes.

The equations governing the initial flow in non-dimensional form in zone — 1 and
zone — 2 are

2
CIC RV (1)
dy
d®u
P - JD%u,-M?Ru, =PR (2)
dy2 p p

Where
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M 2 (The Hartmann number)
R pUh
MU
2 _h?
D “= 3 (The inverse Darcy parameter)

(The Reynolds number)

_ Hest
M
The respective boundary conditions in non-dimensional form are
u=0aty=1 ©)
u,=0aty=0 4)

A (The ratio of viscosities)

The interfacial conditions in non-dimensional form are
du du

u=u,,—=4 R

dy dy

At t > 0 the momentum equations governing the flow in non-dimensional form are

at y=s, (5)

in Zone -1

2 3

Zone — 2

ou, 10,

p

& R oy

2
6up

otay?

+S (D*R) ™ Au, =M*u, (7)

2
ph?

Where S = is the viscoelastic parameter

The corresponding non-dimensional boundary and interfacial conditions are
u=laty=1 (t>0) (8)
u,=0aty=0 (t>0)

u=upaty=s,

du
du:/i—paty:sl ®)

dy dy
Solving (1) and (2) subjected the condition (3) to (5)
The expressions for the velocities u and up corresponding to the initial flow are
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_ Sinh(MVR(@A-y)) [ -PR . e -
W), = . {Mﬁcunh(mﬁsl) Sih(MR) +

PRSinh(M+R ) y
16

Ml
Sinh(M,s, ) Sinh(M+R )
Sinh(M/R PR
M| = (c sh(M,s, )— MlSlnh(M S )jSlnh(M\/—(l s, ))—Sinh(M, s)

1

PR MR
M\/E(Smh(M\/_(l 5,)) + gy — leeﬂ}

(10)

PR ( Sinh(M+/RY) 9
M\/— Sinh(M+/R)

PR
MJR

(c h(Mlsl)—MRSmh(Msl)JSlnh(M\/_(l s,)) - Sinh(M,s,)

(Smh(M\/_(l 5,)) +dgy — M\/ﬁdm]

1

G,y = SIMMY) | — TR

MR

PIYALLLA LA

+ E(—Cosh(lvlly)‘
M, -
(11)
Where M, = AD* + MR

The details of the constant coefficients d;¢ etc. are given in the appendix.
Now solve the governing equation (6) and (7) subjected to the conditions (8) to (9)

Let U, U, be the Laplace transforms of u and u, respectively.

Taking transforms on both sides of (6) and (7) and making use of the expression for
the initial velocity (10) and (11) the equations reduce to

1778



International eJournal of Mathematics and Engineering 186 (2012) 1775 — 1789
D.Malleswari', D.Raju® and A.LeelaRatnam®
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= 1+ SRs d25 . PRSmh(M\/ﬁ)d
Ml 16

Sinh(M,s,) Sinh(M+/R)

Sinh(M +R) PR
M, ———— =% i (Cosh(M S — MlSmh(M sl)jSmh(M\/_(l s;))—Sinh(M.s)))

PR MR PR Sinh(M+/Ry)
Sinh(MR(L—s,))+dy — ———d -1 +
M\/ﬁ[ ( ( 1)) 30 . lS]J} M\/_(Slnh(M\/_) )
MPR” [ Sinh(M+/RY)
RSinh(MVR(1- 12
(1+SRS)(S|nh(M\/_) (1+SR)‘/I MVR@-y). (12)
2
Where a2 = REEM)
1+ SRs)
do, R (S +1)Sinh(M,s, )
dy? P = sRs Sinh(MVR) PR
Sinh(M~/R(1—s, ))—Sinh(M,s,))
MR PR -
(—\/_(Smh(M\/—(l S))+dy — Tldlﬁj}r M—\/ﬁe(—Cosh(Mly)/—dm}
(13)
R -
Wh 2 = DR) 1+ M?
ere 1SR [+( ) A+M°
The boundary and the interfacial conditions in the transformed form are
U:1 aty=1 (14)
s
u,=0aty=0 (15)
du,
u=u, dd—u: - Paty=s; (16)
dy " dy

Solving (12) and (13) we obtain
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S'nhwy]{(HSRs)LM "R+a’)d,, ( MR ' M, ¥
. M~/R M,Sinh(M,s, )Sinh(M~/R )
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- o, finh(MVR(@—s,))d, + MVRCosh(MV/R(1—s, )ISinh(8), ) -

PR2
_Sinh MR
i [By]{mﬁ(uspzs)(m *R+a?)Sinh[MR] [ ;Q

.o}, §inh(MVR (1-s,))d;; + MVRCosh(MYRs, )Sinh(Bs,) |

. Jinh(MVRs, )d, + MVRSinh(i, YCosh(MRs, ) | (18)

Taking inverse Laplace Tran form of equations (17) and (18) we obtain

~

U (:osh(dly)Sinh(dl)—Cosh(dl)Sinh(dly)/(j -
= dg 18 _

[Cosh(M JRY)Sinh(M+/R ) — Cosh(M+/R )Sinh(M \/ﬁy)}d
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~ Sinh(MVR
nh ) — Sinh(M+/RY)
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n= 14
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The expressions for d1, dy, etc. are given in the appendix.
The shear stresses are calculated using the formula 7 = (;I_u
y
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The mass flux also determine by the formula
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3. DISCUSSIONS:

The behaviour of the axial velocity in both clean fluid [u] and porous regions [u,] the
shear stress on the boundaries and the mass flux have been computationally evaluated for
variations in the governing parameters viz. M, R, D" and S and their profiles are plotted in
fig. 1-4. Also the influence of the thickness of the porous bed on the axial velocity has been
discussed and the related profiles are plotted in fig. 5.

Figs. 1 and 2 correspond to the axial velocity profiles for variations M and R
respectively, fixing the other parameters. We notice that the behaviour of the axial velocity in
the porous as well as the clean fluid regions very much depends on the relative magnitudes of
these two parameters. Keeping R = 10, when M<4 the axial velocity rises from zero on the
lower plate to a maximum near the upper plate before attaining the prescribed velocity on the
upper plate. However M>4 we notice that the fluid attains maximum velocity within the
porous region near the interface and experiences a sudden retardation at the interface before
gradually rising to attain the prescribed velocity on the upper plate [Fig. 1]. For sufficiently
large M [~ 10] and R > 20, we observe that u gradually enhances from rest on the lower plate
to a maximum near the upper plate and rapidly retards to attain the prescribed value on the
upper plate [Fig. 2]. We may note that u does not experience any retardation at the interface
as in the case of lower values of R [Fig. 1]. Fig.3 corresponds to profiles of u for increase in
the permeability of the medium k. We may note that as k increases the inverse Darcy
parameter D™ reduces. In the porous bed the fluid moves with enhanced velocity as the
permeability increases while it moves with reduced velocity in the clean fluid region [Fig. 3].
Fixing the other parameter an increase in the viscoelastic parameter S retards the fluid flow
[Fig.4] everywhere in the fluid region. Also for S [<1.5] the axial velocity experiences
retardation at the interface before enhancing gradually to attain the prescribed velocity on the
upper plate. However for S > 1.5 we notice that such retardation not found near the interface
and velocity exhibits a monotonic behaviour in attain its prescribed values on the boundary.
The thickness of the porous bed influences the flow both in the porous and clean fluid regions
[Fig. 5]. We observe that as the thickness increases the fluid in the porous bed moves with
reduced velocity. While in the clean fluid region it experiences relatively higher speeds in

[Fig. 5.

The shear stress have been evaluated for lower and upper plates for different
governing parameters and tabulated in table -1 and table -2. We find that the shear stresses
reducing in their magnitude on either boundary planes for increasing the thickness of the
porous bed fixing all the governing parameters. For small thickness of the porous bed the
shear stress on the lower plate enhances with M or R the other parameters being fixed.
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However the shear stress reduced with increasing S or D™ fixing other parameters. A similar
behaviors a notice even for large thickness of the porous bed. On the upper plate the shear
stress is once again reduces with increase in the thickness of the porous bed. For variations in
the governing parameters also its magnitude reduces with increase in M or S or D, keeping
the other parameters fixed. However an increase in R enhances the shear stress on the upper
plate for all sets of the remaining parameters. The mass flux has been evaluated and
tabulated. The mass flux enhances with enhancement in the thickness of the porous bed for
all the variations in the governing parameters. It also enhances increase in R while it reduce
with increase in S. We also observe that lesser the permeability of the bed higher mass flux in
the entire region fixing the other parameters it is interesting note that the mass flux enhances
M for M < 8. But later reduces for higher values of M.

1.4 -

—— M=2

—a— M=4

—a— M=6

Fig. 1. Variation of axial velocity with M
P=1t=1,D'=10" R=10,S=25, A=1.2,5,=0.4

——R=10
—#—R=20

—&— R=30

—=— R=40
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Fig. 2. Variation of axial velocity with R
P=1,t=1,D"'=10  M=10,S=251=12,5=04

l -

i ="10000"
> Dt ="100000"
n' ="200000"

1
Y
Fig. 3. Variation of axial velocity with D™
P=1t=1,R=10M=10,5S=25A=12,5=04
1.2

——5=15

—— S=2
=} —&—S=25

—&— S=3
—%—S=3.5

1.2

Fig. 4. Variation of axial velocity with S
P=1,t=1,R=10,M =10, D'=10* A =1.2,5=0.4
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12

—o—s=0.2
=] —#—s=04
—&—s=0.6
1.2
\
Fig. 5. Variation of axial velocity with s;
P=1,t=1,R=10,M=10,S=25=12 D"'=10
Table-1
SHEARSTRESS T AT y=0
Sy | I i v \) VI VII VI IX X Xl X1
0.2 | -12.2568 | -12.8673 | -14.902 | -18.193 | -24.5519 | -30.6506 | -15.9821 | -12.8893 | -11.9552 | -11.5128 | -11.2556 | -11.2568
0.4 | 658855 | -7.28827 | -8.15632 | -11.6336 | -16.3004 | -20.7513 | -16.4158 | -7.04258 | -6.79953 | -6.58846 | -6.58856 | -6.58856
0.6 | -536491 | -5.83101 | -6.40156 | -9.98149 | -14.4209 | -18.7113 | -7.02967 | -5.42504 | -5.43003 | -5.36485 | -5.36491 | -6.58856
0.8 | -477935 | -513706 | -557087 | -9.05139 | -13.3096 | -17.4944 | -5.65555 | -4.41886 | -4.75986 | -4.77931 | -4.77935 | -4.77938
| | i v \% Vi Vil Vil IX X Xl Xl
M 5 8 10 5 5 5 5 5 5 5 5 5
R 10 10 10 20 30 40 10 10 10 10 10 10
S 25 25 25 23 25 25 05 1 15 25 25 25
Dt 10° 10° 10* 10* 10* 10* 10° 10° 10° 10° 10° 10°
Table-2
SHEAR STRESS 7 AT y=1
Sy | 1 i v \% Vi Vil VI IX X Xl X1
0.2 | 336284 | 331979 3.3119 449678 | 5.49036 6.33381 2.9356 3.2949 335035 | 3.36125 | 3.36284 | 3.36291
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4.53476

0.4 | 320153 | 320257 | 3.26685 5.50873 6.27725 534806 | 3.26415 | 330162 | 3.29153 3.2852 3.27701
0.6 | 331317 | 311943 | 166351 | 444603 | 448695 | 0611142 | 3.62499 | 320673 | 3.34383 | 3.31317 3.2363 3.2215
0.8 | 329954 | 103902 | 667735 | 251592 | -38185 2.706 357202 | 313089 | 332505 | 329955 | 329954 | 5,000
| I 11 v Vv Vi VII VIl IX X Xl X1l
M 5 8 10 5 5 5 5 5 5 5 5 5
R 10 10 10 20 30 40 10 10 10 10 10 10
S 25 25 25 23 25 25 05 1 15 25 25 25
D-l 10° 10° 10° 10* 10° 10° 10* 10* 10* 10* 10* 10*
Table-3
Mass flux
Sq 1 " n v v VI Wil VIl IX X XI X1l
0.2 | -39.4015 | -55.0495 ) ) ) ’ - 27,6337 ) ) 331757 | -35.552
351759 | 75.5317 | 97.0398 | 140.586 | 38.0582 28.1315 | 35.1759
0.4 | -36.1869 | -55.8984 ) ) ) ’ ) 20608 | -29.467 ) -36.187 | -36.1868
421799 | 77.4136 | 99.5413 | 143.924 | 43.6886 36.1865
0.6 | -37.2785 | -56.761 ) ) ' ) ) -31.7401 ) ) 37.2287 | -37.3561
451595 | 79.3435 | 102.107 | 147.347 | 50.3423 30.8711 | 37.2280
0.8 | -38.3017 | -57.6374 | -48.373 ) ) ’ ) -34.0492 : ) -38.3135 | -38.3360
813248 | 104739 | 150.858 | 58.4448 32.3485 | 38.3012
1 | -394075 | -585276 ) ) ) ) ) -36.5614 ) ) -30.4077 | -39.4522
518693 | 83.3502 | 107.441 | 154.461 | 68.8872 339044 | 39.4016
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I I i v v VI Vil Vi IX X X1 X1
M 5 8 10 5 5 5 5 5 5 5 5 5
R 10 10 10 20 30 40 10 10 10 10 10 10
s 25 25 25 23 25 25 05 1 15 25 25 25
Dt 10 10° 10° 10° 10° 10° 10° 10* 10* 10* 10* 10°
REFERENCES:

Brinkman, A calculation of the viscous force extended by a flowing fluid on a dense

swarm of particles. Appl. Sci. Res., Al, 27 — 34, (1947).

Mahaboob Basha, “Viscoelastic fluid flow and the Heat Transfer through porous

medium”, Ph.D., thesis, S.K. University, anantapur, pp. 1-19 and pp 37 — 64, (1994).
. Ozer S., Suhubi E.S. stability of poiseuille flow of an incompressible second grade

Rivlin — Ericksen fluid. ARI, 51: 221 — 7 (1999).

. Pattabhi Ramacharyulu N.Ch. and Appala Raju K., “Run-up flow in a generalized

porous medium”, Indian J.Pure and Applied Math., 15(6), pp. 665 — 670; (1984).

1789




