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Abstract: 
This paper deals with  a steady flow of a viscous fluid  of finite depth in a porous medium 
over a fixed horizontal, impermeable and thermally insulated bottom where as the other side 
is stress free and kept at a constant temperature with a constant heat source distributed 
uniformly in the flow region. Exact solutions of Momentum and Energy equations are 
obtained when the temperatures on the fixed bottom and on the free surface are prescribed. 
Flow rate ,Mean velocity , Temperature , Mean Temperature , Mean Mixed Temperature  in 
the flow region and the Nusselt number  on the free surface have been obtained. The cases of 
large and small values of porosity coefficient have been obtained as limiting cases. Further  
the cases of small depth(shallow fluid) and large depth (deep fluid) are also discussed. The 
results are illustrated graphically.  
Keywords: porous medium, heat source, velocity , temperature, porosity parameter. 
 
Introduction: 
Forced convective flows through porous and non porous channels for a variety of geometrics 
was examined by Raghavacharyulu N.Ch [1] in the year 1984 and G.V.Satyanarayana Raju 
[2]  in  the  year 1989.Sharma Veena Kumari Mishra [3]  examined thermo solute convection 
flow in a porous medium. Rajesh  Yadav [4] in the year 2006 studied convective heat transfer 
through a porous medium in channels and pipes. Steady flow of a viscous fluid through   a  
saturated  porous medium of finite thickness , impermeable and thermally insulated  bottom  
and the other side is stress free ,at a constant temperature is studied by Khaja Moinuddin and 
N.Ch.Pattabhi Ramacharyulu[5].  

In this paper the steady  flow of a viscous  fluid of viscosity   and of finite depth H 
through a porous medium of permeability coefficient ‘k*’ over a fixed impermeable , 
thermally insulated bottom and with a constant heat source ‘F’ distributed uniformly in the 
flow region is investigated. The flow is generated by a constant horizontal pressure gradient 
parallel to the fixed bottom. The momentum equation considered is the generalized  darcy’s 
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law proposed by Yama Moto  and Iwamura[6] which takes into  account the convective 
acceleration and the Newtonian viscous stresses in addition to the classical Darcy force. 

The basic equations of momentum and energy are solved to get exact expressions for 
the velocity and temperature distributions. Employing these , the flow rate , mean velocity, 
mean temperature, mean mixed temperature and the Nusselt number on the free surface have 
been obtained and their variations are illustrated graphically. 
The cases of A(i) High  porosity(small   ) (ii) Low  porosity (large   ) and 
                     B(i) Large depths (large h)B(ii) Shallow depths(small h) are also discussed. 
 
Mathematical formulation. 
 Consider the steady forced convective flow of a Newtonian viscous fluid of viscosity 
 through a saturated porous medium of finite depth H over a fixed horizontal impermeable 
bottom. The flow is generated by a constant pressure gradient parallel to the plate. Further the 
bottom is thermally insulated. The free surface is exposed to the atmospheric temperature 1T  
and a constant heat source F is distributed uniformly in the flow region . 

With reference to a rectangular Cartesian coordinate system with the origin O on the 
bottom, X-axis in the flow direction (i.e. parallel to the applied pressure gradient) the Y-axis 
vertically upwards, the bottom is represented as Y=0 and the free surface as Y=H. 
      

 
                                                           Flow Configuration  

Let  the  convective  flow  be  characterized  by  the  velocity  field U = (U(Y), 0, 0)   
and   the  temperature   T(Y) . The   choice   of   the velocity  satisfies the continuity equation 

0. U        --   (1)  
The momentum equation: 

  0*2

2







k

U

dY

Ud

X

P 
                                                       -- (2) 

and the energy equation : 

        F
dY

dU

dY

Td
K

dX

dT
cU  








2

2

2

                                              --(3) 

In the above equations   is  the fluid density, *k  the coefficient of porosity of the medium, 
‘c’ is the specific heat, K  the  thermal conductivity  of the fluid and P the fluid pressure and  
‘F’ a constant heat source distributed uniformly in the flow region. 

0 HY
dY
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Boundary conditions: 
 The bottom is fixed        U (0) =0                                                        ----(4a) 

            The free surface is shear stress free     0
dY
dU

  on  Y=H.                ----(4b) 

The  bottom is thermally insulated 

                                                    0)0( Y
dY
dT                                              ---(5a) 

The free surface is exposed to the atmosphere 
1)( THT  = temperature of the atmosphere.                                                      ---(5b) 

In terms of the non-dimensional variables defined hereunder: 

X=ax ; Y=ay ; H=ah  ;  U
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K

c ; E=   
)01(22

3

TTKa 

        
)01(

2

TTK

Fa
f


                      ---(6) 

(where a is some standard length and T0 the temperature at the bottom) the basic field 
equations  
can be rewritten as : 
Momentum equation: 

 1
2

2

2

cu
dy

ud
                                                                                               --(7) 

and the Energy equation 

          f
dy
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EucrP

dy

d
 








2

22

2


                                                                            --(8) 

 
together with the boundary conditions for velocity 

 u(0)=0  and 0hy
dy

du
                                                                                          --(9) 

and for the temperature  

 00 y
dy

d
     and   1)( h                                                                    --(10) 

The solution of these equations together with the related boundary conditions yield. 
 
The velocity distribution: 

  
  







 


h
yhc

yu



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1)(                                                                   --(11) 

The flow rate in the non-dimensional form is  
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The mean velocity in non-dimensional form is 
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and the temperature distribution: 
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                                                                                                                              --(14)                                                       
Further the mean temperature in the non-dimensional form is given by  
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                                                                                                                              --(15) 
So the mean mixed temperature in the dimensionless form is  
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Heat transfer coefficient Nusselt numbe On the free surface : 
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Case 1:   Fluid flow in a medium with high porosity that is flow for small values of   or 
large values of the porosity coefficient k*. 
The flow parameters are presented here in terms of the non-dimensional variables neglecting 

powers of  higher than )2(O . 
Velocity:  

 



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 43438
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
                                   --(18) 

Mean velocity:  
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u                                                                         --(19) 
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



 





 63533405662

720
211 443 9030120 hyhhyy

ccrp
hyhy 

    62512421533202415635215609045
180

2
1 43224 yhyyhyhyhhyhyyhh

Ec
            

 
2

)22( yhf 
                                                                                                       --(20) 
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               Mean mixed temperature: 
        

)2225(336

)22139462(2
)222899714256(

)2225(24192

42
1)22491396(

)2225(1008

4
211

0

0

h

hfh
h

h

hEc
h

h

hcprc
h

udy

h
udy




























                                                                                                                                        

--(22)                                                       
         Nusselt number on the free surface: 
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Case 2:  For large values of    i.e for low porosity the asymptotic flow characteristics 
are the following: 

For large   
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Mean velocity: 
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Temperature:  
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Mean temperature: 
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Nusselt number on the free surface:  fhh
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Case 3:     Flow for large depth i.e for large H: 
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Nusselt number on the free surface: 
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Case 4:    Flow for shallow fluids that is ‘h’ small (retaining  terms  upto  the   O ( 2h )). 

The velocity:   )}344(2)21224{(
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Mean temperature: 
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Mean mixed temperature: 
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h
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 Nusselt number on the free surface :  

     fhhy
dy
d
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Results and Discussions: 
1. It is noticed that the velocity of the fluid decreases with the increase in the values of 

the porosity parameter    (Fig.1). A similar behavior is observed in the special case 
of small value of   (Fig.2) and becomes zero when   is very large (Fig.3). In the 
case of  the large depth of the channel ( i . e large h ) the thickness of the boundary 
layer  decreases with the increase in the value  of the porosity parameter    (Fig.4). 
For shallow fluids (small h )  contrary to the previous cases , the velocity of the fluid 
increases  with the increasing values of  the porosity parameter   (Fig .5) . 

2. It is observed that   the mean velocity of the  fluid  increases  with the  increasing   
values of  ‘ h ‘ and   decreases   with    the  increase  in    the  values  of   the    



International eJournal of Mathematics and Engineering 148 (2012) 1352 – 1367 
K.Moinuddin and Prof.N.Ch.Pattabhi Ramacharyulu 

 

1359

porosity    parameter  (Fig 6). For the special cases of small   and large    it is 
clear that the mean velocity increases with the increasing pressure gradient  c1 and 
decreases for the increasing values of    ( Fig .7, Fig .8). In the case of large depths 
(that is large h ) mean velocity  decreases  with  the  increasing values of the porosity 
parameter   (Fig .9 ) and  for shallow depths it increases with the increasing pressure 
gradient c1and the depth of channel ‘h’(Fig .10). 

      3.   Fig .11     and   Fig.12   illustrates   that   the   temperature   slightly      decreases with  
the  increase  in   porosity  parameter    and  remains  constant  when  the heat 
source f=100.  It is evident from Fig.13 and Fig.14 that temperature of the fluid 
decreases with increasing porosity parameter   when f=10 and almost remains 
unaltered when f = 100, for different values of  . From Fig.15 it is noticed that 
temperature remains constant for f=100  and the  large values of porosity parameter 
 . Temperature of the fluid flow increases with the increase in the porosity 
parameter    (Fig.16 ). It is observed that the temperature remains the same when 
f=10 and y<0.04 for different porosity parameter  ,there after it decreases with the 
increasing values of   (Fig.17).            

4. Mean temperature decreases with the increasing values of the prandtl number 
‘p’(Fig.18). In the case of  small   mean temperature  decreases with the increasing 
values of the prandtl number ‘p’ and the porosity parameter (Fig.19).Fig.20 
illustrates that the mean temperature also remains constant for  f=100 when the 
porosity parameters  ’s are large. For large depths mean temperature decreases with 
the increase in the prandtl number ‘p’ and has negligible variations for smaller values 
of p when f=100 (Fig.21).For the case of small h mean temperature remains constant 
from y=0.02 and increases for y<0.02 and theincreasing values  of  f( Fig.22). 

5. Fig.23 illustrates that the mean mixed temperature increases with the increase in the 
porosity parameter  .  In the case of small   mean mixed temperature decreases for 
the increasing prandtl   number ‘p’ and reaches a constant value at  =0.9 when 
f=100(Fig .24). It is evident from Fig 25 that the mean mixed temperature increases 
with the increasing values of    in the case of large  . In the case of large h mean 
mixed temperature slightly decreases with the increase in smaller values of  ‘p’ 
(Fig.26).  For shallow depths mean mixed temperature becomes unity. 

   
6. Heat transfer rate increases with the increasing values of the prandtl number ‘p’  when 

the constant heat  source is f=10 (Fig 27). In the case of small   the rate of  heat 
transfer increases with the increasing values of the prandtl number ‘p’ when f =10 
(Fig28).The rate of heat transfer nusselt number in the case of large   on the free 
surface increases with the  increase in the prandtl number ‘p’ (Fig.29).For f= 10 in the 
case of large h the rate of heat  transfer nusselt number on the free surface increases 
with the  increasing values of  ‘p’ (Fig.30). In the case small h it is clear that the 
nusselt number decreases with the increase in f. 
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